tensorflow 1.0 学习:十图详解tensorflow数据读取机制
本文转自:https://zhuanlan.zhihu.com/p/27238630
在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解。确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料。今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下tensorflow的数据读取机制,文章的最后还会给出实战代码以供参考。
一、tensorflow读取机制图解
首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示:
假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg……我们只需要把它们读取到内存中,然后提供给GPU或是CPU进行计算就可以了。这听起来很容易,但事实远没有那么简单。事实上,我们必须要把数据先读入后才能进行计算,假设读入用时0.1s,计算用时0.9s,那么就意味着每过1s,GPU都会有0.1s无事可做,这就大大降低了运算的效率。
如何解决这个问题?方法就是将读入数据和计算分别放在两个线程中,将数据读入内存的一个队列,如下图所示:
读取线程源源不断地将文件系统中的图片读入到一个内存的队列中,而负责计算的是另一个线程,计算需要数据时,直接从内存队列中取就可以了。这样就可以解决GPU因为IO而空闲的问题!
而在tensorflow中,为了方便管理,在内存队列前又添加了一层所谓的“文件名队列”。
为什么要添加这一层文件名队列?我们首先得了解机器学习中的一个概念:epoch。对于一个数据集来讲,运行一个epoch就是将这个数据集中的图片全部计算一遍。如一个数据集中有三张图片A.jpg、B.jpg、C.jpg,那么跑一个epoch就是指对A、B、C三张图片都计算了一遍。两个epoch就是指先对A、B、C各计算一遍,然后再全部计算一遍,也就是说每张图片都计算了两遍。
tensorflow使用文件名队列+内存队列双队列的形式读入文件,可以很好地管理epoch。下面我们用图片的形式来说明这个机制的运行方式。如下图,还是以数据集A.jpg, B.jpg, C.jpg为例,假定我们要跑一个epoch,那么我们就在文件名队列中把A、B、C各放入一次,并在之后标注队列结束。
程序运行后,内存队列首先读入A(此时A从文件名队列中出队):
再依次读入B和C:
此时,如果再尝试读入,系统由于检测到了“结束”,就会自动抛出一个异常(OutOfRange)。外部捕捉到这个异常后就可以结束程序了。这就是tensorflow中读取数据的基本机制。如果我们要跑2个epoch而不是1个epoch,那只要在文件名队列中将A、B、C依次放入两次再标记结束就可以了。
二、tensorflow读取数据机制的对应函数
如何在tensorflow中创建上述的两个队列呢?
对于文件名队列,我们使用tf.train.string_input_producer函数。这个函数需要传入一个文件名list,系统会自动将它转为一个文件名队列。
此外tf.train.string_input_producer还有两个重要的参数,一个是num_epochs,它就是我们上文中提到的epoch数。另外一个就是shuffle,shuffle是指在一个epoch内文件的顺序是否被打乱。若设置shuffle=False,如下图,每个epoch内,数据还是按照A、B、C的顺序进入文件名队列,这个顺序不会改变:
如果设置shuffle=True,那么在一个epoch内,数据的前后顺序就会被打乱,如下图所示:
在tensorflow中,内存队列不需要我们自己建立,我们只需要使用reader对象从文件名队列中读取数据就可以了,具体实现可以参考下面的实战代码。
除了tf.train.string_input_producer外,我们还要额外介绍一个函数:tf.train.start_queue_runners。初学者会经常在代码中看到这个函数,但往往很难理解它的用处,在这里,有了上面的铺垫后,我们就可以解释这个函数的作用了。
在我们使用tf.train.string_input_producer创建文件名队列后,整个系统其实还是处于“停滞状态”的,也就是说,我们文件名并没有真正被加入到队列中(如下图所示)。此时如果我们开始计算,因为内存队列中什么也没有,计算单元就会一直等待,导致整个系统被阻塞。
而使用tf.train.start_queue_runners之后,才会启动填充队列的线程,这时系统就不再“停滞”。此后计算单元就可以拿到数据并进行计算,整个程序也就跑起来了,这就是函数tf.train.start_queue_runners的用处。
三、实战代码
我们用一个具体的例子感受tensorflow中的数据读取。如图,假设我们在当前文件夹中已经有A.jpg、B.jpg、C.jpg三张图片,我们希望读取这三张图片5个epoch并且把读取的结果重新存到read文件夹中。
对应的代码如下:
# 导入tensorflow
import tensorflow as tf # 新建一个Session
with tf.Session() as sess:
# 我们要读三幅图片A.jpg, B.jpg, C.jpg
filename = ['A.jpg', 'B.jpg', 'C.jpg']
# string_input_producer会产生一个文件名队列
filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)
# reader从文件名队列中读数据。对应的方法是reader.read
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
# tf.train.string_input_producer定义了一个epoch变量,要对它进行初始化
tf.local_variables_initializer().run()
# 使用start_queue_runners之后,才会开始填充队列
threads = tf.train.start_queue_runners(sess=sess)
i = 0
while True:
i += 1
# 获取图片数据并保存
image_data = sess.run(value)
with open('read/test_%d.jpg' % i, 'wb') as f:
f.write(image_data)
我们这里使用filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)建立了一个会跑5个epoch的文件名队列。并使用reader读取,reader每次读取一张图片并保存。
运行代码后,我们得到就可以看到read文件夹中的图片,正好是按顺序的5个epoch:
如果我们设置filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)中的shuffle=True,那么在每个epoch内图像就会被打乱,如图所示:
我们这里只是用三张图片举例,实际应用中一个数据集肯定不止3张图片,不过涉及到的原理都是共通的。
tensorflow 1.0 学习:十图详解tensorflow数据读取机制的更多相关文章
- 十图详解tensorflow数据读取机制(附代码)转知乎
十图详解tensorflow数据读取机制(附代码) - 何之源的文章 - 知乎 https://zhuanlan.zhihu.com/p/27238630
- 十图详解tensorflow数据读取机制
在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下 ...
- 十图详解TensorFlow数据读取机制(附代码)
在学习TensorFlow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下 ...
- 【转载】 十图详解tensorflow数据读取机制(附代码)
原文地址: https://zhuanlan.zhihu.com/p/27238630 何之源 深度学习(Deep Learning) 话题的优秀回答者 --------------- ...
- 跟我学机器视觉-HALCON学习例程中文详解-QQ摄像头读取条码
跟我学机器视觉-HALCON学习例程中文详解-QQ摄像头读取条码 第一步:插入QQ摄像头,安装好驱动(有的可能免驱动) 第二步:打开HDevelop,点击助手-打开新的Image Acquisitio ...
- 面渣逆袭:Spring三十五问,四万字+五十图详解
大家好,我是老三啊,面渣逆袭 继续,这节我们来搞定另一个面试必问知识点--Spring. 有人说,"Java程序员都是Spring程序员",老三不太赞成这个观点,但是这也可以看出S ...
- Vue2.0学习--Vue数据通信详解
一.前言 组件是 vue.js最强大的功能之一,而组件实例的作用域是相互独立的,这就意味着不同组件之间的数据无法相互引用.组件间如何传递数据就显得至关重要.本文尽可能罗列出一些常见的数据传递方式,如p ...
- echarts3.0之关系图详解
近期需要使用echarts关系图,当我打开echarts3.0官方demo后发现,对于新手而言,直接看懂有点儿难度,固写这样一篇文章让自己加深记忆,也便新手迅速上手.话不多说,开整生气! echart ...
- Vue2.0学习——axios用法详解
功能特性 在浏览器中发送 XMLHttpRequests 请求 在 node.js 中发送 http请求 支持 Promise API 拦截请求和响应 转换请求和响应数据 自动转换 JSON 数据 客 ...
随机推荐
- 重新拾取:TFS2017钉钉机器人源代码签入通知
http://www.cnblogs.com/79039535/p/9316791.html 现在很多公司办公都使用钉钉打卡签到,于是鉴于公司也使用钉钉就打算用钉钉来做一个源代码签入通知. 首先先去打 ...
- 解决用SHA256算法做私钥签名时,遇到“指定的算法无效”的问题
在上一篇随笔“记一次三方接口开发的数据加密方案”中,使用SHA256对数据进行签名时,我提到了一个异常,System.Security.Cryptography.CryptographicExcept ...
- having使用
啰嗦点: where子句用来筛选 from子句中指定的操作所产生的行. group by 子句用来分组 where子句的输出. having子句用来从分组的结果中筛选行. 对于可以在分组操作之前或之后 ...
- 咸鱼入门到放弃13--监听器(Listener)
一.监听器介绍 1.1.监听器的概念
- java中的static代码块为什么只执行一次
原因在最后,这是其中的一个小例子. 如: SessionFactory负责保存和使用所有配置信息,消耗内存资源非常大 所以一个web项目要保证只创建一个SessionFactory 那么在使用hibe ...
- Python 代码片段整理
1.numpy.random.shuffle(x) import numpy as np x = [] for i in range(10): x.append(i) print(x) np.rand ...
- Android中SDK工具集锦
来源:<Android 4 高级编程> Android提供的SDK中包含有很多用于设计.实现.调试应用程序的工具:比较重要的如下所述: 1. ADB工具 Android应用程序调试桥ADB ...
- tensorflow 使用 1 常量,变量
import tensorflow as tf #创建一个常量 op 一行二列 m1 = tf.constant([[3, 3]]) #创建一个常量 op 二行一列 m2 = tf.constant( ...
- vs2012,打开早期版本窗体错误
<runtime> <NetFx40_LegacySecurityPolicy enabled="true"/></runtime>
- 网防G01管理检测系统Linux版安装
监测包内容: gov_defence_agent_x64_linux_v3.1.18.tar.gz LinuxVersion(datalog.sh getlog.sh setup.sh) 1. ...