题目链接

https://www.lydsy.com/JudgeOnline/problem.php?id=1124

https://www.luogu.org/problemnew/show/P3472

分析

首先, 每个神枪手都只有一个目标.

若是把每个神枪手当成一个点来建图, 那么这个图每个点的出度都是1(基环内向树)

既然\(N \leq 10^6\), 这道题基本上是个贪心.

分别考虑最少存活人数和最大存活人数的求解. (死亡人数 = N - 存活人数)

1. 最少存活人数(minlive)

若是一个点入度为0, 那么这个点必定存活.

对于基环内向森林中的每一个基环内向树, 判断其中是否有入度为0的点.

若有, 那么这个基环内向树中除了入度为0的点其他点都可以被杀(环上的点先开枪使环上只留1个点, 再按照拓扑序逆序开枪即可)

此时minlive += cnt[ ind==0 ]

若无, 那么其中必定1个点可以存活, minlive++(环长为1的需要特判).

2. 最多存活人数(maxlive)

这个问题相对复杂.

先考虑内向树上maxlive的求解.

内向树上叶子节点必定存活. 而且, 从下到上, 每一层的节点个数都\(\ge\) 其上一层节点个数.所以取从下到上的1, 3, 5, 7....层是最优方案.

如: 这棵内向树有3层.

所以, 将入度为0的点(最下层点集)取出, 用类似于拓扑排序分层的方法, 隔一层向队列中加点即可(详见代码).

具体来说, 如果a杀死了b, 那么b指向的人c就少了一个可以杀死他的人. 所以把c的入度-1. 当c入度为0时, c必定存活, 那么可以把c加入队列, 作为a这一层之后的"活人"层(这一点与拓扑排序相同)

再考虑基环内向树上maxlive的求解.

用以上算法求解过后, 图中必定剩下若干个环.

这些环对maxlive的贡献是 环长/2.

code

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
#define rep(i, j, k) for(register int i=(j);i<=(k);++i)
#define per(i, j, k) for(register int i=(j);i>=(k);--i) int read(){
int ret = 0, f = 1; char c=getchar();
while(isdigit(c) == false) {
if(c=='-')f=-1;
c=getchar();
}
while(isdigit(c)) ret = ret*10+c-'0', c=getchar();
return ret*f;
}
const int maxn= 1e6+5;
int n;
int to[maxn], ind[maxn];
int L, R, q[maxn];
int maxlive, minlive; bool dead[maxn], vis[maxn];
void getdead(){
minlive = 0;
L = R = 1; //[L, R)
rep(i, 1, n){
if(ind[i] == 0){
minlive++;
q[R++] = i; //将入度为0的点加入队列
for(int cur = i; !vis[cur]; vis[cur] = 1, cur = to[cur]);
}
}
rep(i, 1, n) if(!vis[i]){
int looplen = 0;
for(int cur = i; !vis[cur]; vis[cur] = 1, cur = to[cur])looplen++;
if(looplen != 1) {
minlive += 1;
}
} //calculate minlive memset(vis, 0, sizeof vis);
while(R - L > 0){
int cur = q[L++], u = to[cur];
if(vis[cur]) continue;
maxlive++, vis[cur] = 1;//cur 存活
if(vis[u] == 0){ //给to[u]除去一个威胁
vis[u] = 1, ind[to[u]]--;
if(ind[to[u]] == 0) q[R++] = to[u];
}
assert(u <= n);
}
// printf("bfs : %d %d\n" ,maxlive, minlive);
rep(i, 1, n) if(!vis[i]) {
int looplen = 0, cur;
for(cur = i; !vis[cur]; vis[cur] = 1, cur = to[cur])looplen++;
if(cur == i) maxlive += (looplen)/2;
else maxlive += (looplen+1)/2;
} //calculate maxlive
// printf("clearloop : %d %d\n" ,maxlive, minlive); }
signed main(){
// freopen("5.in", "r", stdin);
n =read();
rep(i, 1, n) {
to[i] = read();
ind[to[i]]++;
}
getdead();
printf("%d %d\n", n - maxlive, n - minlive);
return 0;
}

bzoj1124_枪战_基环树的更多相关文章

  1. [bzoj3037/2068]创世纪[Poi2004]SZP_树形dp_并查集_基环树

    创世纪 SZP bzoj-3037/2068 Poi-2004 题目大意:给你n个物品,每个物品可以且仅可以控制一个物品.问:选取一些物品,使得对于任意的一个被选取的物品来讲,都存在一个没有被选取的物 ...

  2. 【LOJ523】[LibreOJ β Round #3]绯色 IOI(悬念)(霍尔定理_基环树)

    题目 LOJ523 官方题解 分析 由于某些原因,以下用「左侧点」和「右侧点」分别代替题目中的「妹子」和「男生」. 根据题意,显然能得出一个左侧点只能向一个或两个右侧点连边.这似乎启发我们把左侧点不看 ...

  3. [bzoj1040][ZJOI2008]骑士_树形dp_基环树_并查集

    骑士 bzoj-1040 ZJOI-2008 题目大意:n个骑士,每个骑士有权值val和一个讨厌的骑士.如果一个骑士讨厌另一个骑士那么他们将不会一起出战.问出战的骑士最大atk是多少. 注释:$1\l ...

  4. Hdu第八场 树形dp+基环树

    Card Game 每个牌背面的数字朝正面的数字连一条有向边 则题目变为问你最少翻转多少次 能使得每个数字的入度不超过1 首先判断图中每个连通块是不是树或者基环树 因为只有树或者基环树能使得每个点的入 ...

  5. 【BZOJ1791】【IOI2008】【基环树】island(status第一速度)

      1791: [Ioi2008]Island 岛屿  Time Limit: 20 Sec  Memory Limit: 162 MB Submit: 908  Solved: 159 [Su ...

  6. BZOJ_4636_蒟蒻的数列_线段树+动态开点

    BZOJ_4636_蒟蒻的数列_线段树+动态开点 Description 蒟蒻DCrusher不仅喜欢玩扑克,还喜欢研究数列 题目描述 DCrusher有一个数列,初始值均为0,他进行N次操作,每次将 ...

  7. BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组

    BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组 Description 酷爱日料的小Z经常光顾学校东门外的回转寿司店.在这里,一盘盘寿司通过传送带依次呈现在小Z眼前.不同的寿 ...

  8. BZOJ_3252_攻略_线段树+dfs序

    BZOJ_3252_攻略_线段树+dfs序 Description 题目简述:树版[k取方格数] 众所周知,桂木桂马是攻略之神,开启攻略之神模式后,他可以同时攻略k部游戏.今天他得到了一款新游戏< ...

  9. BZOJ_4653_[Noi2016]区间_线段树+离散化+双指针

    BZOJ_4653_[Noi2016]区间_线段树+离散化+双指针 Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间, ...

随机推荐

  1. 075、配置Virtualbox backend(2019-04-22 周一)

    参考https://www.cnblogs.com/CloudMan6/p/7617211.html   Rex-Ray 支持多种backend,本节学习如何配置 virtualbox的backend ...

  2. XGBboost 特征评分的计算原理

    xgboost是基于GBDT原理进行改进的算法,效率高,并且可以进行并行化运算,而且可以在训练的过程中给出各个特征的评分,从而表明每个特征对模型训练的重要性, 调用的源码就不准备详述,本文主要侧重的是 ...

  3. CentOS:xmr-stak-cpu安装,服务器CPU挖Monero门罗币

    一.获取钱包地址 可以使用本地钱包地址.首先到Monero官网下载本地钱包,支持Windows 64-bit.Windows 32-bit.Mac OS X 64-bit.Linux 64-bit.L ...

  4. sqlmap注入入门

    sqlmap注入入门 sqlmap的用法: ​ linux中: sqlmap [选项] ​ Windows中: python sqlmap [选项] 常用的参数及含义: 目标 ​ -d DIRECT ...

  5. 3D Slicer中文教程(五)—三维视图颜色改变

    3D Slicer在分割后三维重建的图像,效果很好,但是存在一定的不足,默认的颜色并不是很合适,这时手动设置三维视图下的需要的颜色就很有必要了.如下图所示,默认的三维重建后的颜色. 这样的颜色显然不是 ...

  6. js创建1-100的数组

    //实现方法一:循环赋值var arr1 = new Array(100);for(var i=0;i<arr1.length;i++){ arr1[i] = i;}console.log(ar ...

  7. 安装 python pip Django

    python 安装 1. 官网下载:以 window 为例,按提示下载,版本号根据实际需求选择: 2. 选择路径,安装完成后,命令行输入 python 检测是否安装成功,下图为安装成功显示:quit( ...

  8. 【转】Python——plot可视化数据,作业8

    Python——plot可视化数据,作业8(python programming) subject1k和subject1v的形状相同 # -*- coding: utf-8 -*- import sc ...

  9. Ubuntu如何安装vncserver

    Ubuntu上安装和配置vncserver,然后通过客户端进行连接,就能够使用图像界面的方式来运行上面的软件了. 1.使用apt-cache search vncserver命令搜索可以用来安装vnc ...

  10. ELK搭建<二>:安装ES插件head

    1.去github下载head,针对ES版本不同,安装方式也不一样, =>在2.x以前版本可以通过插件安装 for Elasticsearch 2.x: sudo elasticsearch/b ...