3143: [Hnoi2013]游走

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 2264  Solved: 987
[Submit][Status][Discuss]

Description

一个无向连通图,顶点从1编号到N,边从1编号到M。 
小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。 
现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。

Input

第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边。 输入保证30%的数据满足N≤10,100%的数据满足2≤N≤500且是一个无向简单连通图。

Output

仅包含一个实数,表示最小的期望值,保留3位小数。

Sample Input

3 3
2 3
1 2
1 3

Sample Output

3.333

HINT

边(1,2)编号为1,边(1,3)编号2,边(2,3)编号为3。

Source

非官方数据

Solution

和 博物馆 那道题类似,列期望方程高斯消元得解。

如果对边进行处理,复杂度是$O((N^{2})^{3})$的,所以考虑利用点来求解边。

设未知数$X_{i}$表示第$i$号点的期望经过次数。那么显然有$X_{i}=\sum X_{j}$这样就可以列方程了。

显然有两个特例,必然从$1$号点出发,所以$X_{1}-1=\sum X_{j}$,以及必然从$N$号点结束,所以$X_{N}=0$,其余的可以得解。

对于一条边$<u,v>$,经过这条边的期望次数就是$\frac {X_{u}} {d[u]}+\frac {X_{v}}{d[v]}$,总期望最小,就是期望次数越小的边标号越大即可。

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
inline int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define MAXN 550
#define eps 1e-5
int N,M,mp[MAXN][MAXN],flag,d[MAXN];
double a[MAXN][MAXN],X[MAXN],p[MAXN*MAXN],ans;
inline void Debug()
{
puts("=========");
for (int i=; i<=N; i++,puts(""))
for (int j=; j<=N+; j++) printf("%.2lf ",a[i][j]);
puts("");
}
inline void Gauss()
{
flag=;
for (int i=; i<=N; i++)
{
int mx=i;
for (int j=i+; j<=N; j++)
if (abs(a[j][i])>abs(a[mx][i])) mx=j;
swap(a[i],a[mx]);
if (abs(a[i][i])<eps) {flag=-; continue;}
for (int j=i+; j<=N+; j++) if (abs(a[i][j])>) a[i][j]/=a[i][i];
a[i][i]=1.0; for (int j=i+; j<=N; j++)
{
for (int k=i+; k<=N+; k++)
a[j][k]-=a[j][i]*a[i][k];
a[j][i]=0.0;
}
// Debug();
}
for (int i=,f=; i<=N; i++,f=)
{
for (int j=; j<=N && f; j++)
if (abs(a[i][j])>eps) f=;
if (abs(a[i][M+])>eps && f) flag=;
}
if (flag==) return;
for (int i=N; i>=; i--)
{
X[i]=a[i][N+];
for (int j=i+; j<=N; j++) X[i]-=X[j]*a[i][j];
}
}
int main()
{
N=read(),M=read();
for (int i=,x,y; i<=M; i++) x=read(),y=read(),mp[x][y]=mp[y][x]=,d[x]++,d[y]++;
for (int i=; i<=N-; i++)
for (int j=; j<=N-; j++)
if (mp[i][j]) a[i][j]=-1.0/d[j];
a[][N+]=1.0;
for (int i=; i<=N; i++) a[i][i]=1.0;
// Debug();
Gauss();
for (int i=,tot=; i<=N; i++)
for (int j=i+; j<=N; j++)
if (mp[i][j]) p[++tot]=X[i]/d[i]+X[j]/d[j];
sort(p+,p+M+);
// for (int i=1; i<=M; i++) printf("%.2lf ",p[i]); puts("");
for (int i=; i<=M; i++) ans+=p[i]*(M-i+);
printf("%.3lf\n",ans);
return ;
}

【BZOJ-3143】游走 高斯消元 + 概率期望的更多相关文章

  1. Luogu3232 HNOI2013 游走 高斯消元、期望、贪心

    传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...

  2. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  3. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  4. 【BZOJ3143】【HNOI2013】游走 && 【BZOJ3270】博物馆 【高斯消元+概率期望】

    刚学完 高斯消元,我们来做几道题吧! T1:[BZOJ3143][HNOI2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小 ...

  5. [HNOI2013][BZOJ3143] 游走 - 高斯消元

    题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边 ...

  6. 【xsy1201】 随机游走 高斯消元

    题目大意:你有一个$n*m$的网格(有边界),你从$(1,1)$开始随机游走,求走到$(n,m)$的期望步数. 数据范围:$n≤10$,$m≤1000$. 我们令 $f[i][j]$表示从$(1,1) ...

  7. 【BZOJ3143】【HNOI2013】游走 高斯消元

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3143 我们令$P_i$表示从第i号点出发的期望次数.则$P_n$显然为$0$. 对于$P ...

  8. 【BZOJ-3270】博物馆 高斯消元 + 概率期望

    3270: 博物馆 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 292  Solved: 158[Submit][Status][Discuss] ...

  9. BZOJ3270 博物馆(高斯消元+概率期望)

    将两个人各自所在点视为状态,新建一个图.到达某个终点的概率等于其期望次数.那么高斯消元即可. #include<iostream> #include<cstdio> #incl ...

随机推荐

  1. 运算符.png

  2. html标签学习

    1. 标题 : <h1> - <h6> 2. 分割线 : <hr> 3. 加粗: <strong> 4. 斜体: <em> <i> ...

  3. [备查]使用 SPQuery 查询 "Person or Group" 字段

    原文地址:http://www.stum.de/2008/02/06/querying-the-person-or-group-field-using-spquery/ Querying the “P ...

  4. Vagrant基础简要记录

    Vagrant是一种开源软件,它为跨众多操作系统构建可重复的开发环境提供了一种方法.Vagrant使用提供者(provider)来启动隔离的虚拟环境.默认的提供者是Virtualbox Vagrant ...

  5. android AsynTask处理返回数据和AsynTask使用get,post请求

    Android是一个单线程模型,Android界面(UI)的绘制都只能在主线程中进行,如果在主线程中进行耗时的操作,就会影响UI的绘制和事件的响应.所以在android规定,不可在主线中进行耗时操作, ...

  6. Android中使用Notification实现宽视图通知栏(Notification示例二)

    Notification是在你的应用常规界面之外展示的消息.当app让系统发送一个消息的时候,消息首先以图表的形式显示在通知栏.要查看消息的详情需要进入通知抽屉(notificationdrawer) ...

  7. screen:多重视窗管理程序

    screen:多重视窗管理程序 screen [-S SCREEN_NAME]: 创建窗口,可指定窗口名称,如果不指定,则是ID.$HOSTNAME screen -ls: 列出所有的screen窗口 ...

  8. Ubuntu 14.04 LTS 下升级 gcc 到 gcc-4.9、gcc-5 版本

    如果没记错的话,阿里云ECS上的Ubuntu也是LTS版本. 如果还在使用较旧版本的Ubuntu,或者是Ubuntu LTS,那么我们是很难体验新版gcc的.怎么办呢? 我们或许可以自己去编译用旧版本 ...

  9. 编程语言吉祥物之Duke

    在看到这个可爱的小家伙前,我一直以为那个咖啡杯子是Java的吉祥物.直到拿到<Java性能优化权威指南>这本书,才知道有这个小东西Duke.这位可爱的Duke是由Joe Palrang在1 ...

  10. Everything(文件搜索神器)

    前言 Everything官网: http://www.voidtools.com/ 软件版本: V1.3.4.686 (x64) 操作系统: windows 7/10 搜索FTP(内网)资源 比如内 ...