【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 2264 Solved: 987
[Submit][Status][Discuss]
Description
一个无向连通图,顶点从1编号到N,边从1编号到M。
小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。
现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。
Input
第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边。 输入保证30%的数据满足N≤10,100%的数据满足2≤N≤500且是一个无向简单连通图。
Output
仅包含一个实数,表示最小的期望值,保留3位小数。
Sample Input
2 3
1 2
1 3
Sample Output
HINT
Source
Solution
和 博物馆 那道题类似,列期望方程高斯消元得解。
如果对边进行处理,复杂度是$O((N^{2})^{3})$的,所以考虑利用点来求解边。
设未知数$X_{i}$表示第$i$号点的期望经过次数。那么显然有$X_{i}=\sum X_{j}$这样就可以列方程了。
显然有两个特例,必然从$1$号点出发,所以$X_{1}-1=\sum X_{j}$,以及必然从$N$号点结束,所以$X_{N}=0$,其余的可以得解。
对于一条边$<u,v>$,经过这条边的期望次数就是$\frac {X_{u}} {d[u]}+\frac {X_{v}}{d[v]}$,总期望最小,就是期望次数越小的边标号越大即可。
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
inline int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define MAXN 550
#define eps 1e-5
int N,M,mp[MAXN][MAXN],flag,d[MAXN];
double a[MAXN][MAXN],X[MAXN],p[MAXN*MAXN],ans;
inline void Debug()
{
puts("=========");
for (int i=; i<=N; i++,puts(""))
for (int j=; j<=N+; j++) printf("%.2lf ",a[i][j]);
puts("");
}
inline void Gauss()
{
flag=;
for (int i=; i<=N; i++)
{
int mx=i;
for (int j=i+; j<=N; j++)
if (abs(a[j][i])>abs(a[mx][i])) mx=j;
swap(a[i],a[mx]);
if (abs(a[i][i])<eps) {flag=-; continue;}
for (int j=i+; j<=N+; j++) if (abs(a[i][j])>) a[i][j]/=a[i][i];
a[i][i]=1.0; for (int j=i+; j<=N; j++)
{
for (int k=i+; k<=N+; k++)
a[j][k]-=a[j][i]*a[i][k];
a[j][i]=0.0;
}
// Debug();
}
for (int i=,f=; i<=N; i++,f=)
{
for (int j=; j<=N && f; j++)
if (abs(a[i][j])>eps) f=;
if (abs(a[i][M+])>eps && f) flag=;
}
if (flag==) return;
for (int i=N; i>=; i--)
{
X[i]=a[i][N+];
for (int j=i+; j<=N; j++) X[i]-=X[j]*a[i][j];
}
}
int main()
{
N=read(),M=read();
for (int i=,x,y; i<=M; i++) x=read(),y=read(),mp[x][y]=mp[y][x]=,d[x]++,d[y]++;
for (int i=; i<=N-; i++)
for (int j=; j<=N-; j++)
if (mp[i][j]) a[i][j]=-1.0/d[j];
a[][N+]=1.0;
for (int i=; i<=N; i++) a[i][i]=1.0;
// Debug();
Gauss();
for (int i=,tot=; i<=N; i++)
for (int j=i+; j<=N; j++)
if (mp[i][j]) p[++tot]=X[i]/d[i]+X[j]/d[j];
sort(p+,p+M+);
// for (int i=1; i<=M; i++) printf("%.2lf ",p[i]); puts("");
for (int i=; i<=M; i++) ans+=p[i]*(M-i+);
printf("%.3lf\n",ans);
return ;
}
【BZOJ-3143】游走 高斯消元 + 概率期望的更多相关文章
- Luogu3232 HNOI2013 游走 高斯消元、期望、贪心
传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1026 Solved: 448[Submit][Status] ...
- 【BZOJ3143】【HNOI2013】游走 && 【BZOJ3270】博物馆 【高斯消元+概率期望】
刚学完 高斯消元,我们来做几道题吧! T1:[BZOJ3143][HNOI2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小 ...
- [HNOI2013][BZOJ3143] 游走 - 高斯消元
题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边 ...
- 【xsy1201】 随机游走 高斯消元
题目大意:你有一个$n*m$的网格(有边界),你从$(1,1)$开始随机游走,求走到$(n,m)$的期望步数. 数据范围:$n≤10$,$m≤1000$. 我们令 $f[i][j]$表示从$(1,1) ...
- 【BZOJ3143】【HNOI2013】游走 高斯消元
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3143 我们令$P_i$表示从第i号点出发的期望次数.则$P_n$显然为$0$. 对于$P ...
- 【BZOJ-3270】博物馆 高斯消元 + 概率期望
3270: 博物馆 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 292 Solved: 158[Submit][Status][Discuss] ...
- BZOJ3270 博物馆(高斯消元+概率期望)
将两个人各自所在点视为状态,新建一个图.到达某个终点的概率等于其期望次数.那么高斯消元即可. #include<iostream> #include<cstdio> #incl ...
随机推荐
- atitit.http原理与概论attilax总结
atitit.http原理与概论attilax总结 1. 图解HTTP 作者:[日]上野宣 著1 2. HTTP权威指南(国内首本HTTP及其相关核心Web技术权威著作)1 3. TCP/IP详解(中 ...
- [转载]C#委托和事件(Delegate、Event、EventHandler、EventArgs)
原文链接:http://blog.csdn.net/zwj7612356/article/details/8272520 14.1.委托 当要把方法作为实参传送给其他方法的形参时,形参需要使用委托.委 ...
- javascript浏览器检测
<script type="text/javascript"> /** * 获取浏览器类型以及版本号 * 支持国产浏览器:猎豹浏览器.搜狗浏览器.傲游浏览器.3 ...
- SharePoint 2013 日期和时间字段格式设置
前言 最近碰到一个需求,用户希望修改日期和时间字段的格式,因为自己的环境是英文的,默认的时间格式是[月/日/年]这样的格式,我也是碰到这个问题才知道,这是美式的时间格式,然而用户希望变成英式的时间格式 ...
- CALayer的transform属性
先来与View比较一下 View:transform -> CGAffineTransformRotate... layer:transform -> CATransform3DRotat ...
- 做JavaWeb开发不知Java集合类不如归家种地
Java作为面向对象语言对事物的体现都是以对象的形式,为了方便对多个对象的操作,就要对对象进行存储.但是使用数组存储对象方面具有一些弊端,而Java 集合就像一种容器,可以动态地把多个对象的引用放入容 ...
- mysql半同步复制问题排查
1.问题背景 默认情况下,线上的mysql复制都是异步复制,因此在极端情况下,主备切换时,会有一定的概率备库比主库数据少,因此切换后,我们会通过工具进行回滚回补,确保数据不丢失.半同步复制则 ...
- IIS中启用ASP并连接Access数据库的解决办法
1. IIS安装ASP模块 进入控制面板 ---- 打开或关闭Windows功能 选择如下所示两项,点击安装完成 2. 打开父路径许可 选择相应应用程序池 ----- 高级设置 ---- 将“启用父路 ...
- Oracle学习笔记十二 子程序(存储过程、自定函数)和程序包
子程序 子程序:命名的 PL/SQL 块,编译并存储在数据库中. 子程序的各个部分: 1.声明部分 2.可执行部分 3.异常处理部分(可选) 子程序的分类: 1.过程 - 执行某些操作 2.函数 ...
- shell编程常用的截取字符串操作
1. 常用的字符串操作 1.1. 替换字符串:$ echo ${var/ /_}#支持正怎表达式 / /表示搜索到第一个替换,// /表示搜索到的结果全部替换. ...