【codeforces 749E】 Inversions After Shuffle
http://codeforces.com/problemset/problem/749/E (题目链接)
题意
给出一个1~n的排列,从中等概率的选取一个连续段,设其长度为l。对连续段重新进行等概率的全排列,求排列后整个原序列的逆序对的期望个数。
Solution
考虑对于每一对数${(a_i,a_j),i<j}$算贡献。
1.连续段包含${a_i,a_j}$
不妨设${a_i<a_j}$,则只有当排列后${a_j}$再${a_i}$前面才会对答案有贡献(${a_i>a_j}$的情况同理),连续段长度为${l}$。
于是满足${a_i}$在${a_j}$前面的排列数为${P_l^{l-2}}$,概率:${\frac{P_l^{l-2}}{P_l^l}=\frac{1}{2}}$。
满足包含${a_i}$和${a_j}$的连续段有${i*(n-j+1)}$个,其概率为:${\frac{2*i*(n-j+1)}{n*(n+1)}}$。
所以其期望等于两个概率相乘:
$${q_{i,j}=\frac{i*(n-j+1)}{n*(n+1)}}$$
这是${O(n^2)}$的,考虑优化。总期望:
$${Q=\sum_{i=1}^n \sum_{j=i+1}^n q_{i,j}}$$
$${Q=\sum_{i=1}^n \sum_{j=i+1}^n \frac{i*(n-j+1)}{n*(n+1)}}$$
发现${(n-j+1)}$是连续的,于是就变成了:
$${Q=\sum_{i=1}^n \frac {i*(n-i)*(n-i+1)} {2*n*(n+1)}}$$
这样复杂度就是${O(n)}$的了。
2.连续段不同时包含${a_i,a_j}$
如果${a_i<a_j}$,那么因为不被连续段同时包含,它们不会有机会改变相对位置,所以不会对答案做出贡献。考虑${a_i>a_j}$的情况。
那么连续段可能取到的区间有:${[1,j-1],[i+1,n]}$。考虑到区间${[i+1,j-1]}$被算了2次,容斥一下,所以区间的概率:
$${P_{i,j}=\frac {(j-1)*j+(n-i)*(n-i+1)-(j-i-1)*(j-i)} {n*(n+1)}}$$
$${P_{i,j}=\frac {(n^2+n)-(2*i+2*n*i)+2*i*j} {n*(n+1)}}$$
这个${P_{i,j}}$怎么快速求解呢,考虑逆序对这个东西。
$${Q=\sum_{i=1}^n \sum_{j=i+1}^n \frac {(n^2+n)-(2*i+2*n*i)+2*i*j} {n*(n+1)}}$$
设满足${a_j<a_i,j>i}$的${a_j}$的个数为${x}$,显然${x}$我们可以通过树状数组用求逆序对的方法${O(nlogn)}$的求出来,则:
$${Q=\sum_{i=1}^n \frac {x*((n^2+n)-(2*i+2*n*i)) + \sum_{j=i+1}^n 2*i*j} {n*(n+1)}}$$
那么现在${\sum_{j=i+1}^n 2*i*j}$怎么求呢。把${2*i}$提出去,那么就成了${2*i*\sum_{j=i+1}^n j}$我们用${y}$记录满足${a_j<a_i,j>i}$的${a_j}$的位置的和,也就是${\sum_{j=i+1}^n j}$,那么显然这个东西我们也是可以通过树状数组用求逆序对的方法${O(nlogn)}$的算出来的。则:
$${Q=\sum_{i=1}^n \frac {x*((n^2+n)-(2*i+2*n*i)) + 2*i*y} {n*(n+1)}}$$
于是问题就${O(nlogn)}$的解决了。
细节
mdzz不晓得哪里爆掉了还是精度问题,调了2天,最后莫名AC。。。
代码
// codeforces 749E
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 1<<30
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=100010;
LL c[maxn],s[maxn],n;
int a[maxn];
long double ans; int lowbit(int x) {
return x&-x;
}
void add(LL *c,int x,LL val) {
for (int i=x;i<=n;i+=lowbit(i)) c[i]+=val;
}
LL query(LL *c,int x) {
LL res=0;
for (int i=x;i;i-=lowbit(i)) res+=c[i];
return res;
} void solve1() { //区间包含
long double Q=0;
for (LL i=1;i<=n;i++)
Q+=(long double)(i*(n-i)*(n-i+1))/2/n/(n+1);
ans+=Q;
}
void solve2() { //区间不包含
long double Q=0;
for (int i=n;i>=1;i--) {
LL x=query(c,a[i]-1);
Q-=(long double)(x*((2*i+2*n*i)-(n*n+n)))/n/(n+1);
Q+=(long double)(2*i)/n/(n+1)*query(s,a[i]-1);
add(c,a[i],1);
add(s,a[i],i);
}
ans+=Q;
}
int main() {
scanf("%lld",&n);
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
solve1();
solve2();
printf("%.20Lf",ans);
return 0;
}
贴一个暴力,供参考:
// codeforces 749E
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 1<<30
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=100010;
LL c[maxn],s[maxn],n;
int a[maxn];
long double ans; int main() {
freopen("aaa.in","r",stdin);freopen("ccc.out","w",stdout);
scanf("%lld",&n);
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
for (LL i=1;i<=n;i++)
ans+=(long double)(i*(n-i)*(n-i+1))/(2*n*(n+1));
long double res=0;
for (LL i=n;i>=1;i--) {
for (LL j=i+1;j<=n;j++)
if (a[i]>a[j]) res+=(long double)((j-1)*j+(n-i)*(n-i+1)-(j-i-1)*(j-i))/(n*(n+1));
}
ans+=res;
printf("%.20Lf",ans);
return 0;
}
【codeforces 749E】 Inversions After Shuffle的更多相关文章
- 【codeforces 415D】Mashmokh and ACM(普通dp)
[codeforces 415D]Mashmokh and ACM 题意:美丽数列定义:对于数列中的每一个i都满足:arr[i+1]%arr[i]==0 输入n,k(1<=n,k<=200 ...
- 【codeforces 707E】Garlands
[题目链接]:http://codeforces.com/contest/707/problem/E [题意] 给你一个n*m的方阵; 里面有k个联通块; 这k个联通块,每个连通块里面都是灯; 给你q ...
- 【codeforces 707C】Pythagorean Triples
[题目链接]:http://codeforces.com/contest/707/problem/C [题意] 给你一个数字n; 问你这个数字是不是某个三角形的一条边; 如果是让你输出另外两条边的大小 ...
- 【codeforces 709D】Recover the String
[题目链接]:http://codeforces.com/problemset/problem/709/D [题意] 给你一个序列; 给出01子列和10子列和00子列以及11子列的个数; 然后让你输出 ...
- 【codeforces 709B】Checkpoints
[题目链接]:http://codeforces.com/contest/709/problem/B [题意] 让你从起点开始走过n-1个点(至少n-1个) 问你最少走多远; [题解] 肯定不多走啊; ...
- 【codeforces 709C】Letters Cyclic Shift
[题目链接]:http://codeforces.com/contest/709/problem/C [题意] 让你改变一个字符串的子集(连续的一段); ->这一段的每个字符的字母都变成之前的一 ...
- 【Codeforces 429D】 Tricky Function
[题目链接] http://codeforces.com/problemset/problem/429/D [算法] 令Si = A1 + A2 + ... + Ai(A的前缀和) 则g(i,j) = ...
- 【Codeforces 670C】 Cinema
[题目链接] http://codeforces.com/contest/670/problem/C [算法] 离散化 [代码] #include<bits/stdc++.h> using ...
- 【codeforces 515D】Drazil and Tiles
[题目链接]:http://codeforces.com/contest/515/problem/D [题意] 给你一个n*m的格子; 然后让你用1*2的长方形去填格子的空缺; 如果有填满的方案且方案 ...
随机推荐
- 《连载 | 物联网框架ServerSuperIO教程》- 3.设备驱动介绍
1.C#跨平台物联网通讯框架ServerSuperIO(SSIO)介绍 <连载 | 物联网框架ServerSuperIO教程>1.4种通讯模式机制. <连载 | 物联网框架Serve ...
- Atitit ftp原理与解决方案
Atitit ftp原理与解决方案 Deodeo sh shmayama ..search ftp.. 1. http和ftp都只是通信协议,就是只管传输那一块的,那为什么不能使用ftp来显示网页?? ...
- xamarin 一般错误解决办法
1. android_m2repository_r错误 问题描述: Unzipping failed. Please download https://dl-ssl.google.com/androi ...
- JSPatch来更新已上线的App中出现的BUG(超级详细)
JSPatch的作用是什么呢? 简单来说:(后面有具体的操作步骤以及在操作过程中会出现的错误) 1.iOS应用程序上架到AppStore需要等待苹果公司的审核,一般审核时间需要1到2周.虽然程序在上架 ...
- Mac配置PHP
前言 在MacOS中已经内置了PHP和Apache,所以不需要再额外安装它们,只需要简单几步即可运行PHP. 配置Apache 查看Apache版本: $ sudo apachectl -v 终端关闭 ...
- Hive-0.x.x - Enviornment Setup
All Hadoop sub-projects such as Hive, Pig, and HBase support Linux operating system. Therefore, you ...
- 无法解析指定对象的 TargetProperty (UIElement.RenderTransform).(TransformGroup.Children)[0].(ScaleTransform.ScaleX)“的异常解决
最近在写动画的时候做一个倒计时的效果,就是数字从大到小的一个动画,但是当我设置要new PropertyPath("XXXXXXX")的时候却报了标题的异常,各种报错.百度了好久也 ...
- k近邻算法(knn)的c语言实现
最近在看knn算法,顺便敲敲代码. knn属于数据挖掘的分类算法.基本思想是在距离空间里,如果一个样本的最接近的k个邻居里,绝大多数属于某个类别,则该样本也属于这个类别.俗话叫,"随大流&q ...
- TCP十一种状态
2.全部11种状态 2.1.客户端独有的:(1)SYN_SENT (2)FIN_WAIT1 (3)FIN_WAIT2 (4)CLOSING (5)TIME_WAIT . 2.2.服务器独有的:(1)L ...
- kvm/qemu/libvirt学习笔记 (1) qemu/kvm/libvirt介绍及虚拟化环境的安装
kvm简介 kvm最初由Quramnet公司开发,2008年被RedHat公司收购.kvm全称基于内核的虚拟机(Kernel-based Virtual Machine),它是Linux的一个内核模块 ...