BZOJ1975[Sdoi2010]魔法猪学院——可持久化可并堆+最短路树
题目描述
输入
输出
样例输入
1 2 1.5
2 1 1.5
1 3 3
2 3 1.5
3 4 1.5
1 4 1.5
样例输出
提示
样例解释
有意义的转换方式共4种:
1->4,消耗能量 1.5
1->2->1->4,消耗能量 4.5
1->3->4,消耗能量 4.5
1->2->3->4,消耗能量 4.5
显然最多只能完成其中的3种转换方式(选第一种方式,后三种方式仍选两个),即最多可以转换3份样本。
如果将 E=14.9 改为 E=15,则可以完成以上全部方式,答案变为 4。
数据规模
占总分不小于 10% 的数据满足 N <= 6,M<=15。
占总分不小于 20% 的数据满足 N <= 100,M<=300,E<=100且E和所有的ei均为整数(可以直接作为整型数字读入)。
所有数据满足 2 <= N <= 5000,1 <= M <= 200000,1<=E<=107,1<=ei<=E,E和所有的ei为实数。
首先对反向边跑最短路建出以$n$为根的最短路树。
对于一条从$1$到$n$的路径上的边集$S$(边有顺序),除去在最短路上的边,剩下的边组成的集合为$S'$(按$S$中的顺序),那么对于$S'$中顺序相邻的两条边$(u,v)$和$(s,t)$,$s$一定是$v$的祖先或相同点(因为$s$与$v$在树上直接相连或由树边相连)。
我们设$val_{e}=d_{v}+w-d_{u}$,其中$e$为一条不在最短路树上的边,$d_{i}$表示点$i$到$n$的最短路长度,$w$为这条边的边权,$u,v$分别为这条边的起点和终点。
那么一条从$1$到$n$的路径长度$len$就可以表示成$len=d_{1}+\sum\limits_{e\in S'}^{ }val_{e}$。
那么问题就转化成求第$k$小的$S'$。
最小的$S'$显然是空集,即$S$为从$1$到$n$的最短路。
那么现在考虑如何获得一个新的相对较小的边集,对于一个边集$S'$有两种方法(假设$S'$中最后一条边为$(u,v)$):
1、将$(u,v)$换成以$u$或$u$的祖先为起点的$val$最小的一条非树边。
2、在$S'$的最后添加一条新的非树边满足这条非树边的起点是$v$在最短路树上的祖先或$v$本身,当然也是使这条边的$val$尽量小。
那么我们只需要维护一个小根堆,每次取出堆顶的边集并将通过这个边集获得的新的边集加入堆中即可。
对于两种获得新边集的方法,都需要维护出这个点到$n$路径上所有点的堆中的信息。
我们将每个堆变为可并堆并可持久化,即每个点的堆保存了从这个点到根路径上所有点的堆的信息。
将每个点的可并堆像线段树合并的可持久化一样与子节点的堆合并即可。
$bzoj$与$luogu$的精度不同,代码附上两个版本的。
$bzoj$
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define pr pair<double,int>
const double eps = 1e-6;
using namespace std;
int tot;
int cnt;
int head[5010];
int to[400010];
int next[400010];
double val[400010];
int root[5010];
int ls[2000010];
int rs[2000010];
int end[2000010];
double v[2000010];
double d[5010];
int dis[2000010];
int n,m;
double E,z;
int x,y;
int vis[5010];
int from[5010];
int f[400010];
vector<int>e[5010];
int ans;
priority_queue< pr,vector<pr>,greater<pr> >q;
void add(int x,int y,double z)
{
next[++tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=z;
}
int build(double val,int to)
{
int rt=++cnt;
v[rt]=val;
end[rt]=to;
dis[rt]=1;
return rt;
}
int merge(int x,int y)
{
if(!x||!y)
{
return x+y;
}
if(v[x]-v[y]>=eps)
{
swap(x,y);
}
int rt=++cnt;
ls[rt]=ls[x],rs[rt]=rs[x],end[rt]=end[x],dis[rt]=dis[x],v[rt]=v[x];
rs[rt]=merge(rs[rt],y);
if(dis[ls[rt]]<dis[rs[rt]])
{
swap(ls[rt],rs[rt]);
}
dis[rt]=dis[rs[rt]]+1;
return rt;
}
void dfs(int x)
{
int size=e[x].size();
for(int i=0;i<size;i++)
{
int to=e[x][i];
root[to]=merge(root[to],root[x]);
dfs(to);
}
}
int main()
{
scanf("%d%d%lf",&n,&m,&E);
for(int i=1;i<=m;i++)
{
scanf("%d%d%lf",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
memset(d,127,sizeof(d));
d[n]=0;
q.push(make_pair(d[n],n));
while(!q.empty())
{
int now=q.top().second;
q.pop();
if(vis[now])
{
continue;
}
vis[now]=1;
for(int i=head[now];i;i=next[i])
{
if(i&1)
{
continue;
}
if(d[to[i]]>d[now]+val[i])
{
from[to[i]]=i-1;
d[to[i]]=d[now]+val[i];
q.push(make_pair(d[to[i]],to[i]));
}
}
}
for(int i=1;i<n;i++)
{
f[from[i]]=1;
e[to[from[i]]].push_back(i);
}
for(int i=1;i<=tot;i+=2)
{
if(!f[i])
{
root[to[i+1]]=merge(root[to[i+1]],build(val[i]+d[to[i]]-d[to[i+1]],to[i]));
}
}
dfs(n);
if(E-d[1]>=eps)
{
E-=d[1];
ans++;
}
if(root[1])
{
q.push(make_pair(v[root[1]],root[1]));
}
while(!q.empty())
{
int now=q.top().second;
double res=q.top().first;
if(E-d[1]-res<eps)
{
break;
}
q.pop();
E-=d[1]+res;
ans++;
if(ls[now])
{
q.push(make_pair(v[ls[now]]+res-v[now],ls[now]));
}
if(rs[now])
{
q.push(make_pair(v[rs[now]]+res-v[now],rs[now]));
}
if(root[end[now]])
{
q.push(make_pair(res+v[root[end[now]]],root[end[now]]));
}
}
printf("%d",ans);
}
$luogu$
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define pr pair<long double,int>
const long double eps = 1e-8;
using namespace std;
int tot;
int cnt;
int head[5010];
int to[400010];
int next[400010];
long double val[400010];
int root[5010];
int ls[4000010];
int rs[4000010];
int end[4000010];
long double v[4000010];
long double d[5010];
int dis[4000010];
int n,m;
long double E,z;
int x,y;
int vis[5010];
int from[5010];
int f[400010];
vector<int>e[5010];
int ans;
priority_queue< pr,vector<pr>,greater<pr> >q;
void add(int x,int y,long double z)
{
next[++tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=z;
}
int build(long double val,int to)
{
int rt=++cnt;
v[rt]=val;
end[rt]=to;
dis[rt]=1;
return rt;
}
int merge(int x,int y)
{
if(!x||!y)
{
return x+y;
}
if(v[x]-v[y]>=eps)
{
swap(x,y);
}
int rt=++cnt;
ls[rt]=ls[x],rs[rt]=rs[x],end[rt]=end[x],dis[rt]=dis[x],v[rt]=v[x];
rs[rt]=merge(rs[rt],y);
if(dis[ls[rt]]<dis[rs[rt]])
{
swap(ls[rt],rs[rt]);
}
dis[rt]=dis[rs[rt]]+1;
return rt;
}
void dfs(int x)
{
int size=e[x].size();
for(int i=0;i<size;i++)
{
int to=e[x][i];
root[to]=merge(root[to],root[x]);
dfs(to);
}
}
int main()
{
scanf("%d%d%Lf",&n,&m,&E);
for(int i=1;i<=m;i++)
{
scanf("%d%d%Lf",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
for(int i=1;i<=n;i++)
{
d[i]=(long double)50000000000001.0;
}
d[n]=0;
q.push(make_pair(d[n],n));
while(!q.empty())
{
int now=q.top().second;
q.pop();
if(vis[now])
{
continue;
}
vis[now]=1;
for(int i=head[now];i;i=next[i])
{
if(i&1)
{
continue;
}
if(d[to[i]]+eps>d[now]+val[i])
{
from[to[i]]=i-1;
d[to[i]]=d[now]+val[i];
q.push(make_pair(d[to[i]],to[i]));
}
}
}
for(int i=1;i<n;i++)
{
f[from[i]]=1;
e[to[from[i]]].push_back(i);
}
for(int i=1;i<=tot;i+=2)
{
if(!f[i])
{
root[to[i+1]]=merge(root[to[i+1]],build(val[i]+d[to[i]]-d[to[i+1]],to[i]));
}
}
dfs(n);
if(E-d[1]>=eps)
{
E-=d[1];
ans++;
}
if(root[1])
{
q.push(make_pair(v[root[1]],root[1]));
}
while(!q.empty())
{
int now=q.top().second;
long double res=q.top().first;
if(E-d[1]-res<-eps)
{
break;
}
q.pop();
E-=d[1]+res;
ans++;
if(ls[now])
{
q.push(make_pair(v[ls[now]]+res-v[now],ls[now]));
}
if(rs[now])
{
q.push(make_pair(v[rs[now]]+res-v[now],rs[now]));
}
if(root[end[now]])
{
q.push(make_pair(res+v[root[end[now]]],root[end[now]]));
}
}
printf("%d",ans);
}
BZOJ1975[Sdoi2010]魔法猪学院——可持久化可并堆+最短路树的更多相关文章
- BZOJ1975 SDOI2010魔法猪学院(启发式搜索+最短路+堆)
对反图跑最短路求出每个点到终点的最短路径,令其为估价函数大力A*,第k次到达某个点即是找到了到达该点的非严格第k短路,因为估价函数总是不大于实际值.bzoj可能需要手写堆.正解是可持久化可并堆,至今是 ...
- [BZOJ1975][SDOI2010]魔法猪学院(k短路,A*)
1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2748 Solved: 883[Submit][Statu ...
- bzoj1975: [Sdoi2010]魔法猪学院【k短路&A*算法】
1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2446 Solved: 770[Submit][Statu ...
- BZOJ1975 [Sdoi2010]魔法猪学院
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- 洛谷P2483 Bzoj1975 [SDOI2010]魔法猪学院
题目描述 iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世界的世界本原有了很多的了解:众所周知,世界是由元素构成的:元素与 ...
- BZOJ1975 [Sdoi2010]魔法猪学院 k短路
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1975 题意概括 给出一个无向图,让你走不同的路径,从1到n,路径长度之和不超过E,求最大路径条数. ...
- 【k短路&A*算法】BZOJ1975: [Sdoi2010]魔法猪学院
Description 找出1~k短路的长度. Solution k短路的求解要用到A*算法 A*算法的启发式函数f(n)=g(n)+h(n) g(n)是状态空间中搜索到n所花的实际代价 h(n) ...
- BZOJ1975 SDOI2010魔法猪学院
就是个A*,具体原理可以参考VANE的博文. 正解要手写堆,会被卡常,也许哪天我筋搭错了写一回吧. #include<bits/stdc++.h> #define r register u ...
- 【BZOJ1975】[Sdoi2010]魔法猪学院 A*
[BZOJ1975][Sdoi2010]魔法猪学院 Description iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪 ...
随机推荐
- C++析构函数可虚性探究
C++虚析构函数 析构函数是用来释放对象所申请的资源的函数. 当类内没有自定义的析构函数时,系统会自动调用默认的析构函数. 那么析构函数能否为虚函数呢? 虚函数的意义在于实现“多态性”.即:不同的个体 ...
- .net core 验证 Options 参数
.net core 中通过 PostConfigure 验证 Options 参数 Intro 在 .net core 中配置项推荐用 Options 来实现,有一些参数可能必须是用由用户来配置,不能 ...
- 容器化系列 - 通过Grafana监测InfluxDB数据 on Docker
本文演示在Docker中运行Grafana和InfluxDB,并通过Grafana展示InfluxDB曲线图. 1 准备工作 1.1 安装Docker 请参考这里 1.2 下载镜像 $ docker ...
- 《我们不一样》Alpha冲刺_1-5
第一天 日期:2018/6/15 1.1 今日完成任务情况以及遇到的问题. 马 兰.马 娟:用户.管理员数据库表的设计 李国栋.张惠惠:前端登录界面代码书写 伊力亚.张 康:配置s ...
- 龙尚 U9300C wvdial 拨号上网
龙尚 U9300C 7模 4G LTE (国内全网通) 接入linux系统会有4个串口 其中ttyUSB2 为AT指令口 ttyUSB1 为拨号上网口 wvdial 拨号入网参数 [ ...
- Python面试笔记三
1. 类继承 有如下的一段代码: python对象 如何调用类A的show方法了,方法如下: python对象 __class__方法指向了类对象,只用给他赋值类型A,然后调用方法show,但是用完了 ...
- PHP生成PDF并转换成图片爬过的坑
需求描述:根据订单通过模板合同生成新的PDF合同通过e签宝签约后转为图片给用户下载. 需求整理: 1.如何生成PDF文件:使用TCPDF扩展生成.思考: ⑴为了方便将模板中的固定占位符替换为订单中的内 ...
- #022 Python 实验课
拍7游戏 描述 “拍7游戏”规则是:一堆人围成一圈,开始时,任意指定一人说出数字“1”后,一圈人按顺时针方向,每人按整数由小到大的顺序一人一个地报出后续数字“2”.“3”......,当遇到为“7”的 ...
- centos7下kubernetes(16。kubernetes-滚动更新)
滚动更新:一次只更新一小部分副本,成功后,在更新更多的副本,最终完成所有副本的更新. 滚动更新的最大好处是零停机,整个更新过程始终有副本在运行,从而保证了业余的连续性 下面部署三个副本的应用,出事镜像 ...
- python基础语法、数据结构、字符编码、文件处理 练习题
考试范围 '''1.python入门:编程语言相关概念2.python基础语法:变量.运算符.流程控制3.数据结构:数字.字符串.列表.元组.字典.集合4.字符编码5.文件处理''' 考试内容 1.简 ...