本文作者是一位机器学习工程师,他比较了四种机器学习编程语言(工具):R、Python、MATLAB 和 OCTAVE。作者列出了这些语言(工具)的优缺点,希望对想开始学习它们的人有用。

图源:Pixabay.com

GitHub 地址:https://github.com/mjbahmani/10-steps-to-become-a-data-scientist

 R 语言

R 是一种用于统计计算和图的语言及环境。它是一个 GNU 项目,与贝尔实验室的 John Chambers 及其同事开发的 S 语言及环境类似。R 可以视为 S 的一种不同实现。二者存在一些重要差异,但使用 S 写的很多代码在 R 下运行时无需修改。

优点:

  • 端到端开发到执行(一些 brokers package 允许执行,IB)

  • 开发速度快(比 Python 的代码少 60%)

  • 开源包多

  • 成熟的量化交易包(quantstrat、quantmod、performanceanalyitics、xts)

  • 社区最大

  • 使用 rcpp 可以整合 R 和 C++/C

缺点:

  • 比 Python 慢,尤其是在迭代循环和非向量化函数中

  • 比 Matlab 绘图差,难以实现交互式图表

  • 创建独立应用程序的能力有限

 Python

Python 是一种用于通用编程的解释型高级编程语言,由 Guido van Rossum 创建并于 1991 年首次发布。Python 的设计强调代码可读性,使用了大量空格。它的结构使其在大规模和小规模编程中都能清晰明了。

优点:

  • 端到端开发到执行(一些 brokers package 允许执行,IB)

  • 开源包(Pandas、Numpy、scipy)

  • 交易包(zipline、pybacktest、pyalgotrade)

  • 最适合一般编程和应用程序开发

  • 可连接 R、C++ 和其他语言的「胶水」语言

  • 总体速度最快,尤其是在迭代循环中

缺点:

  • 有一些不成熟的包,尤其是交易包

  • 有些包与其他包不兼容或包含重叠

  • 在金融领域的社区比 R 小

  • 与 R 或 Matlab 相比,相同操作需要更多代码

  • 追踪静默错误(silent error)可能需要很长时间(即使使用可视化调试器/IDE)

 MATLAB

MATLAB(matrix laboratory)是一种多范型数值计算环境。作为 MathWorks 开发的一种专用编程语言,MATLAB 允许矩阵运算、函数和数据绘图、算法实现、用户界面创建,以及与用其他语言(包括 C、C++、C#、Java、Fortran、Python)写成的程序进行交互。

尽管 MATLAB 的设计初衷是数值计算,但其中的可选工具箱使用 MuPAD symbolic engine,具备符号计算能力。额外的包 Simulink 添加了图多领域模拟和针对动态和嵌入系统的基于模型的设计。

优点:

  • 最快的数学和计算平台,尤其是向量化运算/线性矩阵代数。

  • 适合所有数学和交易领域的商业级软件。

  • 脚本简短,但高度集成了所有包。

  • 拥有图和交互式图表的最佳可视化

  • 具备良好测试和支持。

  • 易于管理多线程支持和垃圾收集

  • 最好的调试器

缺点:

  • 无法执行,必须转换成另一种语言。

  • 昂贵:每个 license 大约 1000 美元,每添加一个包需要额外支付 50+ 美元。

  • 无法与其他语言很好地集成。

  • 很难检测出交易系统中的偏差(它是为数学和工程模拟而构建的),因此可能需要广泛的测试。

  • 糟糕的迭代循环性能。

  • 无法开发单独的应用。

 Octave

Octave 可以看作是商业语言 MATLAB 的 GNU 版本,它是一种脚本矩阵语言(scripting matrix language),其语法有大约 95% 可与 MATLAB 兼容。Octave 由工程师设计,因此预装了工程师常用的程序,其中很多时间序列分析程序、统计程序、文件命令和绘图命令与 MATLAB 语言相同。

优点:

  • 首先,目前没有可用的鲁棒性 Octave 编译器,且没有必要有,因为该软件可以免费安装。

  • Octave 和 Matlab 的语言元素相同,除了一些个例,如嵌套函数。Octave 仍然处于积极开发的状态,每一个偏离 Matlab 语法之处都被视为 bug 或者至少是待解决问题。

  • Octave 有很多可用工具箱,只要程序不要求图输出,那么在不进行大量更改的前提下,使用 Octave 运行和使用 Matlab 运行差不多。

  • 图方面的能力是 Matlab 的优势。Matlab 最新版本包括 GUI 设计器,包含大量很棒的可视化特征。

  • Octave 使用 GNU Plot 或 JHandles 作为图程序包,JHandles 与 Matlab 中的图程序包更接近一些。但是,Octave 不具备类似 GUI 设计器的组件,其可视化机制很受限且不与 Matlab 兼容。

  • 集成开发环境也是类似的情况:Octave 有一个 QTOctave 项目,但仍处于早期阶段。

  • Octave 社区的合作很可能帮助该软件很快提供更好、更兼容的图以及 GUI 能力。

缺点:

  • 它只是 MATLAB 的免费开源版本,无法带给用户新的东西。

下表列举了数据科学家和机器学习工程师的常用工具,读者可以查看这些工具的流行度。

原文链接:https://towardsdatascience.com/r-vs-python-vs-matlab-vs-octave-c28cd059aa69

四大机器学习编程语言对比:R、Python、MATLAB、Octave的更多相关文章

  1. 机器学习算法实现(R&Python code)

    Machine Learning Algorithms Machine Learning Algorithms (Python and R) 明天考试,今天就来简单写写机器学习的算法 Types Su ...

  2. Python matlab octave 矩阵运算基础

    基础总结,分别在三种软件下,计算 求逆矩阵 矩阵转置 等运算,比较异同 例子:正规方程法求多元线性回归的最优解 θ=(XTX)-1XTY octave: pwd()当前目录 ones() zeros( ...

  3. 机器学习编程语言之争,Python 夺魁【转载+整理】

    原文地址 en cn 本文内容 表现平平的 MATLAB 貌似强大的 Julia 本身无错的 R 语言 逐渐没落的 Perl 老而弥坚的 Python 我个人很喜欢 Python~ 随着科技的发展,拥 ...

  4. 吴恩达《机器学习》课程笔记——第六章:Matlab/Octave教程

    上一篇  ※※※※※※※※  [回到目录]  ※※※※※※※※  下一篇 这一章的内容比较简单,主要是MATLAB的一些基础教程,如果之前没有学过matlab建议直接找一本相关书籍,边做边学,matl ...

  5. 机器学习编程语言之争,Python夺魁

    机器学习编程语言之争,Python夺魁 随着科技的发展,拥有高容量.高速度和多样性的大数据已经成为当今时代的主题词.数据科学领域中所采用的机器学习编程语言大相径庭.究竟哪种语言最适合机器学习成为争论不 ...

  6. Libsvm:脚本(subset.py、grid.py、checkdata.py) | MATLAB/OCTAVE interface | Python interface

    1.脚本 This directory includes some useful codes: 1. subset selection tools. (子集抽取工具) subset.py 2. par ...

  7. Go/Python/Erlang编程语言对比分析及示例 基于RabbitMQ.Client组件实现RabbitMQ可复用的 ConnectionPool(连接池) 封装一个基于NLog+NLog.Mongo的日志记录工具类LogUtil 分享基于MemoryCache(内存缓存)的缓存工具类,C# B/S 、C/S项目均可以使用!

    Go/Python/Erlang编程语言对比分析及示例   本文主要是介绍Go,从语言对比分析的角度切入.之所以选择与Python.Erlang对比,是因为做为高级语言,它们语言特性上有较大的相似性, ...

  8. 机器学习算法基础(Python和R语言实现)

    https://www.analyticsvidhya.com/blog/2015/08/common-machine-learning-algorithms/?spm=5176.100239.blo ...

  9. 机器学习实践:《Python机器学习实践指南》中文PDF+英文PDF+代码

    机器学习是近年来渐趋热门的一个领域,同时Python 语言经过一段时间的发展也已逐渐成为主流的编程语言之一.<Python机器学习实践指南>结合了机器学习和Python 语言两个热门的领域 ...

随机推荐

  1. 作为小白,如何学习Web前端开发?

    作为一个已经写码这么多年的人,我不会告诉你我最初的时候是自学的,因为刚开始自己学真的特别无聊枯燥,实在学不下去,所以就自己报了一个培训(上元教育)的地方,毕竟是交了钱的,本着不服气的精神,硬是把自己生 ...

  2. Java开发快速上手

    Java开发快速上手 前言 1.我的大学 2.对初学者的建议 3.大牛的三大特点 4.与他人的差距 第一章 了解Java开发语言 前言 基础常识 1.1 什么是Java 1.1.1 跨平台性 1.2 ...

  3. [Swift]LeetCode188. 买卖股票的最佳时机 IV | Best Time to Buy and Sell Stock IV

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  4. [Swift]LeetCode847. 访问所有节点的最短路径 | Shortest Path Visiting All Nodes

    An undirected, connected graph of N nodes (labeled 0, 1, 2, ..., N-1) is given as graph. graph.lengt ...

  5. [Swift]LeetCode982. 按位与为零的三元组 | Triples with Bitwise AND Equal To Zero

    Given an array of integers A, find the number of triples of indices (i, j, k) such that: 0 <= i & ...

  6. 安装部署jumpserver3.0

    1.安装依赖包yum -y install git readline-devel automake autoconf2.下载 jumpservergit clone https://github.co ...

  7. qt集成dsoframer.ocx打开office办公软件

    最近一段时间真是事情太多了,前不久项目中一个嵌入office软件的问题,由于没有时间研究,且项目的需求是浏览word文档,偷了一个懒,把word文档转换成pdf文档,然后嵌入libcef浏览器给打开了 ...

  8. [Python]peewee 使用经验

    peewee 使用经验 本文使用案例是基于 python2.7 实现 以下内容均为个人使用 peewee 的经验和遇到的坑,不会涉及过多的基本操作.所以,没有使用过 peewee,可以先阅读文档 正确 ...

  9. angr进阶(5)内存操作

    angr也可以将符号写在内存里,控制内存中的值,结合任意位置开始有奇效,但就是慢sym-write p = angr.Project('./issue', load_options={"au ...

  10. kubernetes进阶之二:概述

    一:kubernetes是什么 Kubernetes一个用于容器集群的自动化部署.扩容以及运维的开源平台.通过Kubernetes,你可以快速有效地响应用户需求;快速而有预期地部署你的应用; 极速地扩 ...