(1)k-近邻算法是分类数据最简单最有效的方法。
(2)在将数据输入到分类器之前,必须将待处理数据的格式改变为分类器可以接受的格式。
(3)所有的推荐模型都可以使用这个算法,只要将结果量化就行了,主要是要考虑权重的设计。
# -*- coding:utf-8 -*-
#数字型聚类分析

from numpy import *
import operator

def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group,labels

group,labels = createDataSet() #这里的group不能直接用,需要这样子返回参数

def classify0(inX,dataSet,labels,k):
dataSetSize = dataSet.shape[0] #shape[0]就是读取矩阵第一维度的长度
diffMat = tile(inX,(dataSetSize,1)) - dataSet
#>>> tile(1,2) >>>array([1, 1])
#
>>> tile((1,2,3),3) >>>array([1, 2, 3, 1, 2, 3, 1, 2, 3])
    sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1) #我们平时用的sum应该是默认的axis=0 就是普通的相加,而当加入axis=1以后就是将一个矩阵的每一行向量相加
    distances = sqDistances**0.5
sortedDistIndicies = distances.argsort() #排序


classCount={} #classCount={} 这是一个dict,用于存储不同标签出现的次数;
    for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0)+1
sortedClassCount = sorted(classCount.iteritems(),
key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]

classify0([0,0],group,labels,3)

【python】kNN基础算法--分类和推荐系统的更多相关文章

  1. 【python】kNN基础算法--推荐系统

    虽然把text转成全部量化是可以的,但是还是需要把text转成numpy的形式(这个是必须掌握的) 在将数据输入到分类器之前,必须将待处理数据的格式改变为分类器可以接受的格式. 数据规范化.数据归一化 ...

  2. 【python】kNN基础算法--推荐系统(辅助研究)

    # -*- coding:utf-8 -*- # import numpy as np #import numpy 和from numpy import *是不一样的 # # # import num ...

  3. poj和hdu部分基础算法分类及难度排序

    最近想从头开始刷点基础些的题,正好有个网站有关于各大oj的题目分类(http://www.pythontip.com/acm/problemCategory),所以写了点脚本把hdu和poj的一些题目 ...

  4. Python之基础算法介绍

    一.算法介绍 1. 算法是什么 算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输 ...

  5. python函数基础算法简介

    一.多层语法糖本质 """ 语法糖会将紧挨着的被装饰对象名字当参数自动传入装饰器函数中""" def outter(func_name): ...

  6. Python机器学习基础教程-第1章-鸢尾花的例子KNN

    前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库: ...

  7. kNN算法:K最近邻(kNN,k-NearestNeighbor)分类算法

    一.KNN算法概述 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它 ...

  8. 数学建模:2.监督学习--分类分析- KNN最邻近分类算法

    1.分类分析 分类(Classification)指的是从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类的分析方法. 分类问题的应用场景:分 ...

  9. Opencv学习之路—Opencv下基于HOG特征的KNN算法分类训练

    在计算机视觉研究当中,HOG算法和LBP算法算是基础算法,但是却十分重要.后期很多图像特征提取的算法都是基于HOG和LBP,所以了解和掌握HOG,是学习计算机视觉的前提和基础. HOG算法的原理很多资 ...

随机推荐

  1. RocketMq如何顺序消费的消息offest

    RocketMq对于消费者对于消息的如何处理的 1:如果设置了自动提交 返回: ConsumeOrderlyStatus.COMMIT, ConsumeOrderlyStatus.ROLLBACK, ...

  2. 微信小程序--给数组的每个对象添加动画(数据驱动)

    思路:用数据驱动事件,用数组的方式去对循环数组的每个对象进行操作 js代码: data:{ selectCategory: [{ name: '生产模式', content: [{ txt: '原厂' ...

  3. Atcoder ARC-060

    ARC060(2020.7.8) A 背包板子 B 首先感觉这个东西应该不能直接 \(O(1)\) 算出来,那么复杂度应该就是 \(O(\log n), O(\sqrt{n}), O(\sqrt{n} ...

  4. Java枚举使用笔记

    原创:转载需注明原创地址 https://www.cnblogs.com/fanerwei222/p/11833790.html Java枚举简单使用示例: package com.shineyue. ...

  5. 动手写一个LRU缓存

    前言 LRU 是 Least Recently Used 的简写,字面意思则是最近最少使用. 通常用于缓存的淘汰策略实现,由于缓存的内存非常宝贵,所以需要根据某种规则来剔除数据保证内存不被占满. 在r ...

  6. 《PHP程序员面试笔试宝典》——如何回答系统设计题?

    如何巧妙地回答面试官的问题? 本文摘自<PHP程序员面试笔试宝典> 应届生在面试时,偶尔也会遇到一些系统设计题,而这些题目往往只是测试求职者的知识面,或者测试求职者对系统架构方面的了解,一 ...

  7. 有个姑娘叫history

    文章目录 常用参数 history的一些用法 修改history命令默认保存的数量 来给history穿衣服 让我们重新认识一下history history命令用于显示用户以前执行过的历史命令,并且 ...

  8. 记录一次elasticsearch-5.6.4宕机排查经历

    犯罪现场~~ es: 三节点,配置相同 内存: 248G CPU: 没注意看 磁盘: 2T data: 380G左右 indices: 近9800条 在下才疏学浅,目前跟着大佬学习,这个问题还没解决, ...

  9. Gateway 简介

    概述 微服务可能分布在不同的主机上,这样有许多缺点:前端需要硬编码调用不同地址的微服务很麻烦:存在跨域访问的问题:微服务地址直接暴露是不安全的.还有所以需要为前端提供一个统一的访问入口.Gateway ...

  10. pytest--conftest.py用法(单独存放fixtrue配置的一个文件)

    1.conftest.py文件是什么 单独存放fixtrue配置的一个文件 用处是可以多个不同的pytest测试脚本共用一套fixture配置,代码维护方便 2.conftest.py使用注意事项 c ...