基于Python的OpenGL 05 之坐标系统
1. 引言
本文基于Python语言,描述OpenGL的坐标系统
前置知识可参考:
笔者这里不过多描述每个名词、函数和细节,更详细的文档可以参考:
2. 概述
OpenGL中坐标变换的流程如下图:

有图可知:
创建一个物体到屏幕绘制需要三个矩阵变换:模型(Model)、观察(View)、投影(Projection)(即,MVP)
裁剪坐标:\(V_{clip} = M_{projrction} \cdot M_{view} \cdot M_{model} \cdot V_{local}\)
投影时主要有两者投影方式:
- 正交投影:平行视角

- 透视投影:近大远小

3. 编码
编码实现只需设置MVP矩阵即可
设置Model矩阵:
model = glm.mat4(1.0)
model = glm.rotate(glm.radians(-55.0)*glfw.get_time(), glm.vec3(1.0, 1.0, 0.0))
设置View矩阵:
view = glm.mat4(1.0)
# 注意,我们将矩阵向我们要进行移动场景的反方向移动
view = glm.translate(glm.vec3(0.0, 0.0, -3.0))
设置投影矩阵:
projection = glm.mat4(1.0)
projection = glm.perspective(glm.radians(45.0f), screenWidth / screenHeight, 0.1, 100.0);
在顶点着色器中设置MVP变换:
#version 330 core
layout (location = 0) in vec3 aPos;
...
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
// 注意乘法要从右向左读
gl_Position = projection * view * model * vec4(aPos, 1.0);
...
}
将变换矩阵传输到GPU:
glUniformMatrix4fv(glGetUniformLocation(shader.shaderProgram, 'model'), 1, GL_FALSE, glm.value_ptr(model))
glUniformMatrix4fv(glGetUniformLocation(shader.shaderProgram, 'view'), 1, GL_FALSE, glm.value_ptr(view))
glUniformMatrix4fv(glGetUniformLocation(shader.shaderProgram, 'projection'), 1, GL_FALSE, glm.value_ptr(projection))
至此就完成了一次简单的MVP变换,结果图如下:

4. 立体化
构建一个立体的箱子:
设置立方体的六个面(12个三角形,36个点):
vertices = np.array([
-0.5, -0.5, -0.5, 0.0, 0.0,
0.5, -0.5, -0.5, 1.0, 0.0,
0.5, 0.5, -0.5, 1.0, 1.0,
0.5, 0.5, -0.5, 1.0, 1.0,
-0.5, 0.5, -0.5, 0.0, 1.0,
-0.5, -0.5, -0.5, 0.0, 0.0,
-0.5, -0.5, 0.5, 0.0, 0.0,
0.5, -0.5, 0.5, 1.0, 0.0,
0.5, 0.5, 0.5, 1.0, 1.0,
0.5, 0.5, 0.5, 1.0, 1.0,
-0.5, 0.5, 0.5, 0.0, 1.0,
-0.5, -0.5, 0.5, 0.0, 0.0,
-0.5, 0.5, 0.5, 1.0, 0.0,
-0.5, 0.5, -0.5, 1.0, 1.0,
-0.5, -0.5, -0.5, 0.0, 1.0,
-0.5, -0.5, -0.5, 0.0, 1.0,
-0.5, -0.5, 0.5, 0.0, 0.0,
-0.5, 0.5, 0.5, 1.0, 0.0,
0.5, 0.5, 0.5, 1.0, 0.0,
0.5, 0.5, -0.5, 1.0, 1.0,
0.5, -0.5, -0.5, 0.0, 1.0,
0.5, -0.5, -0.5, 0.0, 1.0,
0.5, -0.5, 0.5, 0.0, 0.0,
0.5, 0.5, 0.5, 1.0, 0.0,
-0.5, -0.5, -0.5, 0.0, 1.0,
0.5, -0.5, -0.5, 1.0, 1.0,
0.5, -0.5, 0.5, 1.0, 0.0,
0.5, -0.5, 0.5, 1.0, 0.0,
-0.5, -0.5, 0.5, 0.0, 0.0,
-0.5, -0.5, -0.5, 0.0, 1.0,
-0.5, 0.5, -0.5, 0.0, 1.0,
0.5, 0.5, -0.5, 1.0, 1.0,
0.5, 0.5, 0.5, 1.0, 0.0,
0.5, 0.5, 0.5, 1.0, 0.0,
-0.5, 0.5, 0.5, 0.0, 0.0,
-0.5, 0.5, -0.5, 0.0, 1.0
])
开启深度测试:
glEnable(GL_DEPTH_TEST)
清除深度缓冲:
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
可选项,让箱子旋转:
model = glm.rotate(model, (float)glfwGetTime() * glm.radians(50.0f), glm.vec3(0.5f, 1.0f, 0.0f))
如果顺利的话,结果如下:

6. 多个立方体
这里的多个立方体实质就是指定(同一个立方体)平移到多个位置
设置多个位置:
cubePositions = [
glm.vec3(0.0, 0.0, 0.0),
glm.vec3(2.0, 5.0, -15.0),
glm.vec3(-1.5, -2.2, -2.5),
glm.vec3(-3.8, -2.0, -12.3),
glm.vec3(2.4, -0.4, -3.5),
glm.vec3(-1.7, 3.0, -7.5),
glm.vec3(1.3, -2.0, -2.5),
glm.vec3(1.5, 2.0, -2.5),
glm.vec3(1.5, 0.2, -1.5),
glm.vec3(-1.3, 1.0, -1.5)
]
绘制多个Model:
for cube in cubePositions:
model = glm.translate(cube)
model = glm.rotate(model, glfw.get_time(), glm.vec3(1.0, 0.3, 0.5))
glUniformMatrix4fv(glGetUniformLocation(shader.shaderProgram, 'model'), 1, GL_FALSE, glm.value_ptr(model))
glDrawArrays(GL_TRIANGLES, 0, 36)
实现效果:

7. 完整代码
主要文件test.py:
import glfw as glfw
from OpenGL.GL import *
import numpy as np
from PIL.Image import open
import glm as glm
import shader as shader
glfw.init()
window = glfw.create_window(800, 600, "CoordinateSystem", None, None)
glfw.make_context_current(window)
VAO = glGenVertexArrays(1)
glBindVertexArray(VAO)
vertices = np.array([
-0.5, -0.5, -0.5, 0.0, 0.0,
0.5, -0.5, -0.5, 1.0, 0.0,
0.5, 0.5, -0.5, 1.0, 1.0,
0.5, 0.5, -0.5, 1.0, 1.0,
-0.5, 0.5, -0.5, 0.0, 1.0,
-0.5, -0.5, -0.5, 0.0, 0.0,
-0.5, -0.5, 0.5, 0.0, 0.0,
0.5, -0.5, 0.5, 1.0, 0.0,
0.5, 0.5, 0.5, 1.0, 1.0,
0.5, 0.5, 0.5, 1.0, 1.0,
-0.5, 0.5, 0.5, 0.0, 1.0,
-0.5, -0.5, 0.5, 0.0, 0.0,
-0.5, 0.5, 0.5, 1.0, 0.0,
-0.5, 0.5, -0.5, 1.0, 1.0,
-0.5, -0.5, -0.5, 0.0, 1.0,
-0.5, -0.5, -0.5, 0.0, 1.0,
-0.5, -0.5, 0.5, 0.0, 0.0,
-0.5, 0.5, 0.5, 1.0, 0.0,
0.5, 0.5, 0.5, 1.0, 0.0,
0.5, 0.5, -0.5, 1.0, 1.0,
0.5, -0.5, -0.5, 0.0, 1.0,
0.5, -0.5, -0.5, 0.0, 1.0,
0.5, -0.5, 0.5, 0.0, 0.0,
0.5, 0.5, 0.5, 1.0, 0.0,
-0.5, -0.5, -0.5, 0.0, 1.0,
0.5, -0.5, -0.5, 1.0, 1.0,
0.5, -0.5, 0.5, 1.0, 0.0,
0.5, -0.5, 0.5, 1.0, 0.0,
-0.5, -0.5, 0.5, 0.0, 0.0,
-0.5, -0.5, -0.5, 0.0, 1.0,
-0.5, 0.5, -0.5, 0.0, 1.0,
0.5, 0.5, -0.5, 1.0, 1.0,
0.5, 0.5, 0.5, 1.0, 0.0,
0.5, 0.5, 0.5, 1.0, 0.0,
-0.5, 0.5, 0.5, 0.0, 0.0,
-0.5, 0.5, -0.5, 0.0, 1.0
])
VBO = glGenBuffers(1)
glBindBuffer(GL_ARRAY_BUFFER, VBO)
glBufferData(GL_ARRAY_BUFFER, 8 * vertices.size, vertices, GL_STATIC_DRAW)
glVertexAttribPointer(0, 3, GL_DOUBLE, GL_FALSE, int(8 * 5), None)
glEnableVertexArrayAttrib(VAO, 0)
glVertexAttribPointer(1, 2, GL_DOUBLE, GL_FALSE, int(8 * 5), ctypes.c_void_p(8 * 3))
glEnableVertexAttribArray(1)
image = open('./textures/container.jpg')
texture = glGenTextures(1)
glBindTexture(GL_TEXTURE_2D, texture)
# 为当前绑定的纹理对象设置环绕、过滤方式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, image.size[0], image.size[1], 0, GL_RGB, GL_UNSIGNED_BYTE, image.tobytes())
glGenerateMipmap(GL_TEXTURE_2D)
image2 = open('./textures/awesomeface.png')
texture2 = glGenTextures(1)
glBindTexture(GL_TEXTURE_2D, texture2)
# 为当前绑定的纹理对象设置环绕、过滤方式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, image2.size[0], image2.size[1], 0, GL_RGBA, GL_UNSIGNED_BYTE, image2.tobytes())
glGenerateMipmap(GL_TEXTURE_2D)
shader = shader.Shader("./glsl/test.vs.glsl", "./glsl/test.fs.glsl")
# 配置项
glEnable(GL_DEPTH_TEST)
shader.use()
glUniform1i(glGetUniformLocation(shader.shaderProgram, "texture1"), 0)
glUniform1i(glGetUniformLocation(shader.shaderProgram, "texture2"), 1)
while not glfw.window_should_close(window):
glClearColor(0.2, 0.3, 0.3, 1.0)
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
model = glm.mat4(1.0)
model = glm.rotate(glm.radians(-55.0)*glfw.get_time(), glm.vec3(1.0, 1.0, 0.0))
view = glm.mat4(1.0)
view = glm.translate(glm.vec3(0.0, 0.0, -3.0))
projection = glm.mat4(1.0)
projection = glm.perspective(glm.radians(45.0), 800 / 600, 0.1, 100.0)
shader.use()
# glUniformMatrix4fv(glGetUniformLocation(shader.shaderProgram, 'model'), 1, GL_FALSE, glm.value_ptr(model))
glUniformMatrix4fv(glGetUniformLocation(shader.shaderProgram, 'view'), 1, GL_FALSE, glm.value_ptr(view))
glUniformMatrix4fv(glGetUniformLocation(shader.shaderProgram, 'projection'), 1, GL_FALSE, glm.value_ptr(projection))
glBindVertexArray(VAO)
glActiveTexture(GL_TEXTURE0) # 在绑定纹理之前先激活纹理单元
glBindTexture(GL_TEXTURE_2D, texture)
glActiveTexture(GL_TEXTURE1) # 在绑定纹理之前先激活纹理单元
glBindTexture(GL_TEXTURE_2D, texture2)
cubePositions = [
glm.vec3(0.0, 0.0, 0.0),
glm.vec3(2.0, 5.0, -15.0),
glm.vec3(-1.5, -2.2, -2.5),
glm.vec3(-3.8, -2.0, -12.3),
glm.vec3(2.4, -0.4, -3.5),
glm.vec3(-1.7, 3.0, -7.5),
glm.vec3(1.3, -2.0, -2.5),
glm.vec3(1.5, 2.0, -2.5),
glm.vec3(1.5, 0.2, -1.5),
glm.vec3(-1.3, 1.0, -1.5)
]
for cube in cubePositions:
model = glm.translate(cube)
model = glm.rotate(model, glfw.get_time(), glm.vec3(1.0, 0.3, 0.5))
glUniformMatrix4fv(glGetUniformLocation(shader.shaderProgram, 'model'), 1, GL_FALSE, glm.value_ptr(model))
glDrawArrays(GL_TRIANGLES, 0, 36)
glfw.swap_buffers(window)
glfw.poll_events()
shader.delete()
顶点着色器test.vs.glsl:
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCoord;
out vec2 TexCoord;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
// 注意乘法要从右向左读
gl_Position = projection * view * model * vec4(aPos, 1.0);
TexCoord = aTexCoord;
}
片段着色器test.fs.glsl:
#version 330 core
out vec4 FragColor;
in vec2 TexCoord;
uniform sampler2D texture1;
uniform sampler2D texture2;
void main()
{
FragColor = mix(texture(texture1, TexCoord), texture(texture2, TexCoord), 0.2);
}
注释:
8. 参考资料
[1]坐标系统 - LearnOpenGL CN (learnopengl-cn.github.io)
[2]OpenGL学习笔记(七)坐标系统 - 知乎 (zhihu.com)
[3]g-truc/glm: OpenGL Mathematics (GLM) (github.com)
[4]基于C++的OpenGL 05 之坐标系统 - 当时明月在曾照彩云归 - 博客园 (cnblogs.com)
[5]LearnOpenGL-Python/coordinate_systems.py at master · Zuzu-Typ/LearnOpenGL-Python (github.com)
基于Python的OpenGL 05 之坐标系统的更多相关文章
- 【Machine Learning】决策树案例:基于python的商品购买能力预测系统
决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本 ...
- 如何简单实现接口自动化测试(基于 python) 原博主地址https://blog.csdn.net/gitchat/article/details/77849725
如何简单实现接口自动化测试(基于 python) 2017年09月05日 11:52:25 阅读数:9904 GitChat 作者:饿了么技术社区 原文:如何简单实现接口自动化测试(基于 python ...
- Python 基于python+mysql浅谈redis缓存设计与数据库关联数据处理
基于python+mysql浅谈redis缓存设计与数据库关联数据处理 by:授客 QQ:1033553122 测试环境 redis-3.0.7 CentOS 6.5-x86_64 python 3 ...
- (数据科学学习手札47)基于Python的网络数据采集实战(2)
一.简介 马上大四了,最近在暑期实习,在数据挖掘的主业之外,也帮助同事做了很多网络数据采集的内容,接下来的数篇文章就将一一罗列出来,来续写几个月前开的这个网络数据采集实战的坑. 二.马蜂窝评论数据采集 ...
- 看我如何基于Python&Facepp打造智能监控系统
由于种种原因,最近想亲自做一个基于python&facepp打造的智能监控系统. 0×00:萌芽 1:暑假在家很无聊 想出去玩,找不到人.玩个lol(已卸载),老是坑人.实在是无聊至极,不过, ...
- 从零学习基于Python的RobotFramework自动化
从零学习基于Python的RobotFramework自动化 一. Python基础 1) 版本差异 版本 编码 语法 其他 2.X ASCII try: raise Type ...
- 从0开始学正则表达式-基于python
关于正则表达式,当我们了解它就不难,不了解就很难,其实任何事情都是这样,没有人一生下来就啥都会,说白了,每个人都是一个学习了解进步的过程.学习和掌握正则表达式可能并不是太简单,因为它确实是有点像“外星 ...
- python网络编程05 /TCP阻塞机制
python网络编程05 /TCP阻塞机制 目录 python网络编程05 /TCP阻塞机制 1.什么是拥塞控制 2.拥塞控制要考虑的因素 3.拥塞控制的方法: 1.慢开始和拥塞避免 2.快重传和快恢 ...
- 基于python的pixiv爬虫
基于python的pixiv爬虫 1.目标 在和朋友吹逼过程中,聊到qq群机器人,突发奇想动手做一个p站每日推荐色图的色图机,遂学习爬虫. 目标: 批量下载首页推荐色图. 由于对qq机器人不熟,先利用 ...
- 基于Python+Django的Kubernetes集群管理平台
➠更多技术干货请戳:听云博客 时至今日,接触kubernetes也有一段时间了,而我们的大部分业务也已经稳定地运行在不同规模的kubernetes集群上,不得不说,无论是从应用部署.迭代,还是从资源调 ...
随机推荐
- 云原生 • Kubernetes 认识 k8s、k8s 架构、核心概念点介绍
云原生 • Kubernetes 认识 k8s.k8s 架构.核心概念点介绍 一.Kubernetes 简介Kubernetes 简称 k8s,是支持云原生部署的一个平台,起源于谷歌.谷歌早在十几年之 ...
- dubbo2升级到dubbo3实践
dubbo当前版本 2.7.3 期望升级到 3.0.11. 升级过程 maven依赖变更 <dependency> <groupId>org.apache.dubbo</ ...
- 《吐血整理》高级系列教程-吃透Fiddler抓包教程(36)-掌握Fiddler中Fiddler Script用法,你会有多牛逼-上篇
1.简介 Fiddler是一款强大的HTTP抓包工具,它能记录所有客户端和服务器的http和https请求,允许你监视,设置断点,甚至修改输入输出数据. 使用Fiddler无论对开发还是测试来说,都有 ...
- Redis基本操作(2)
一.list类型 列表的元素类型为string 按照插⼊顺序排序 增加.修改 例1:在左侧插⼊数据 lpush key value1 value2 ... 例2:在右侧插⼊数据 rpush key v ...
- 洛谷P1605例题分析
迷宫 题目描述 给定一个 \(N \times M\) 方格的迷宫,迷宫里有 \(T\) 处障碍,障碍处不可通过. 在迷宫中移动有上下左右四种方式,每次只能移动一个方格.数据保证起点上没有障碍. 给定 ...
- 靶机练习 - 温故知新 - Toppo(sudo 提权)
重新做了一下以前做过的第一个靶机(https://www.cnblogs.com/sallyzhang/p/12792042.html),这个靶机主要是练习sudo提权,当时不会也没理解. 开启靶机, ...
- linux 基础之输入输出重定向
输入输出重定向 输出重定向 正确命令 > 文件 (覆盖) 正确命令 >> 文件(追加) 错误命令 2> 文件(覆盖) 错误命令 2>>文件(追加) 命令> 文 ...
- 算法之倍增和LCA:论点与点之间的攀亲戚
前言 我们在做树形题和图论题时常常遇到这样的问题:要求求出树上两点间的最近公共祖先(LCA),这时我们该怎么办? 思路一:暴力爬爬爬-- 很容易想到让两个点都往上爬,啥时候相遇了就是他们的最近公共祖先 ...
- Ant Design Table 如何动态自定义?Ant Popover 遮挡?
项目场景: 基于electron + Vue + node.js + express + mysql + evanpatchouli-mysql + Ant-Design-Vue,编写一款属于自己的轻 ...
- maven打包出现Failed to execute goal xxx.plugins:maven-compiler-plugin:3.7.0:compile.......:Fatal error compiling解决方法
起初在给项目打包时出现了这个错: 网上查了很多资料,都说JDK配置不对,我检查了一下,发现明明都一样. 为了获取更详细的报错信息,我决定用命令行的打包方式来编译: cd进去要打包的这个目录,用命令行的 ...