手把手教你使用LabVIEW OpenCV DNN实现手写数字识别(含源码)
@
前言
今天和大家一起来看一下在LabVIEW中如何使用OpenCV DNN模块实现手写数字识别
一、OpenCV DNN模块
1.OpenCV DNN简介
OpenCV中的DNN(Deep Neural Network module)模块是专门用来实现深度神经网络相关功能的模块。OpenCV自己并不能训练神经网络模型,但是它可以载入别的深度学习框架(例如TensorFlow、pytorch、Caffe等等)训练好的模型,然后使用该模型做inference(预测)。而且OpenCV在载入模型时会使用自己的DNN模块对模型重写,使得模型的运行效率更高。所以如果你想在OpenCV项目中融入深度学习模型,可以先用自己熟悉的深度学习框架训练好,然后使用OpenCV的DNN模块载入。
2.LabVIEW中DNN模块函数
DNN模块位于程序框图-函数选板-Addons-VIRobotics-opencv_yiku中,如下图所示:
Net选版中的函数与python中的函数对比如下:
二、TensorFlow pb文件的生成和调用
1.TensorFlow2 Keras模型(mnist)
注:本范例必须使用tensorflow 2.x版本
如下图所示所示为数据集以及LabVIEW与Python推理和训练代码,相关源码可在链接中下载。
2.使用Keras搭建cnn训练mnist(train.py),训练部分源码如下:
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)
test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)
train_images = train_images / 255.0
test_images = test_images / 255.0
train_labels = to_categorical(train_labels, 10)
test_labels = to_categorical(test_labels, 10)
model = Sequential() #创建一个Sequential模型
# 第一层卷积:6个卷积核, 大小:5*5, 激活函数:relu
model.add(Conv2D(6, kernel_size=(5, 5), activation='relu', input_shape=(28, 28, 1)))
# 第二层池化:最大池化
model.add(MaxPooling2D(pool_size=(2, 2)))
# 第三层卷积:16个卷积核, 大小: 5*5, 激活函数:relu
model.add(Conv2D(16, kernel_size=(5, 5), activation='relu'))
# 第四层池化:最大池化
model.add(MaxPooling2D(pool_size=(2, 2)))
# 进行扁平化
model.add(Flatten())
# 全连接层一:输出节点为120个
model.add(Dense(120, activation='relu'))
# 全连接层二:输出节点为84个
model.add(Dense(84, activation='relu'))
# 输出层:用softmax激活函数计算分类的概率
model.add(Dense(10, activation='softmax')) # 最后是10个数字,10个分类
model.compile(optimizer=keras.optimizers.Adam(), loss=keras.metrics.categorical_crossentropy, metrics=['accuracy'])
model.fit(train_images, train_labels, batch_size=32, epochs=2, verbose=1)
loss, accuracy = model.evaluate(test_images, test_labels,verbose=0)
#model.save("A:\\code\\tensorflow\\course\\1_fashion_mnist\\mymodel")
print('损失:', loss)
print('准确率:', accuracy)
3.训练结果保存成冻结模型(pb文件)(train.py),训练结果保存为冻结模型的源码如下:
注:无需安装tensorflow也可以运行
#以下是生成pb的代码。注意:用model.save生成的pb文件不能被opencv调用
# Convert Keras model to ConcreteFunction
full_model = tf.function(lambda x: model(x))
full_model = full_model.get_concrete_function(
tf.TensorSpec(model.inputs[0].shape, model.inputs[0].dtype))
# Get frozen ConcreteFunction
frozen_func = convert_variables_to_constants_v2(full_model)
frozen_func.graph.as_graph_def()
layers = [op.name for op in frozen_func.graph.get_operations()]
print("-" * 50)
print("Frozen model layers: ")
for layer in layers:
print(layer)
print("-" * 50)
print("Frozen model inputs: ")
print(frozen_func.inputs)
print("Frozen model outputs: ")
print(frozen_func.outputs)
# Save frozen graph from frozen ConcreteFunction to hard drive
tf.io.write_graph(graph_or_graph_def=frozen_func.graph,
logdir=datapath+r"\frozen_models",
name="frozen_graph.pb",
as_text=False)
运行之后可生成如下图所示的pb模型:
4.python opencv调用冻结模型(cvcallpb.py)
import time
model_path = 'frozen_models\\frozen_graph.pb'
config_path = ''
#net = cv.dnn.readNetFromTensorflow(model_path, config_path)
import gzip
import os
import numpy as np
datapath=os.path.split(os.path.realpath(__file__))[0]
import cv2
def get_data():
train_image = datapath+r"\train-images-idx3-ubyte.gz"
test_image = datapath+r"\t10k-images-idx3-ubyte.gz"
train_label = datapath+r"\train-labels-idx1-ubyte.gz"
test_label = datapath+r"\t10k-labels-idx1-ubyte.gz"
paths = [train_label, train_image, test_label,test_image]
with gzip.open(paths[0], 'rb') as lbpath:
y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)
with gzip.open(paths[1], 'rb') as imgpath:
x_train = np.frombuffer(
imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)
with gzip.open(paths[2], 'rb') as lbpath:
y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)
with gzip.open(paths[3], 'rb') as imgpath:
x_test = np.frombuffer(
imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)
return (x_train, y_train), (x_test, y_test)
(train_images, train_labels), (test_images, test_labels)=get_data()
def to_categorical(labels,number):
a=np.zeros((labels.shape[0],number),dtype=labels.dtype)
count=0
for i in labels:
a[count][i]=1
count+=1
return a
print(train_images.shape)
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)
test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)
train_images = train_images / 255.0
test_images = test_images / 255.0
train_labels = to_categorical(train_labels, 10)
test_labels = to_categorical(test_labels, 10)
# Load a model imported from Tensorflow
net = cv2.dnn.readNetFromTensorflow(model_path, config_path)
a=test_images[0].reshape(1,1,28,28)
net.setInput(a)
# Runs a forward pass to compute the net output
networkOutput = net.forward()
print(networkOutput)
三、LabVIEW OpenCV DNN实现手写数字识别
1、实现手写数字识别并实现MNIST数据简单的可视化(mnist_loadpb_simple.vi)
(1)读取mnist测试数据集二进制文件
(2)载入pb神经网络模型
(3)从二进制文件里读取某一幅图并显示出来
(4)blobImage,并把blob的结果用强度图显示出来
(5)把blob的结果送入神经网络推理,获取结果
(6)总体源码及效果如下:
2、实现手写数字识别并实现MNIST数据高级的可视化(mnist_loadpb.vi)
与简单的可视化区别仅仅有以下几项:
(1)多了getLayerName读出所有的网络层名字
(2)使用了多通道的forward(输入为名称数组)
(3)将前六层(两次卷积——relu——池化用强度图显示出来)
总体源码如下:
运行效果如下:
四、源码下载
链接:https://pan.baidu.com/s/1NU_OcHgS0-5zNXQVkEt5uw
提取码:8888
总结
Q:我该使用tensorflow 1还是tensorflow 2?
A:目前看tensorflow 1与opencv dnn模块、树莓派等开源硬件兼容性更好,且视觉对象检测的模型暂时更丰富。Tesnroflow 2的Keras函数训练神经网络非常方便,但对第三方软硬件兼容性还未做到最佳。估计随着后续版本的推出,TF2会逐渐成为主流。有些新的神经网络算子,慢慢地就不支持TF1了。同时opencv、开源硬件也会不断更新适应最新版本的TF。
另外,训练图像神经网络不用局限于TF,pytorch也是很好的选择。目前我们公司已逐渐从TF转向pytorch了。
Q:LabVIEW的opencv及其dnn模块支持哪些硬件和神经网络模型?
A:提供多种框架模型导入模块:包括tensorflow、pytorch、darknet、openvino等多个平台的深度学习模型,官方的物体分类、物体检测、语义分割、实例分割都支持(后续会讲到),第三方的人脸识别、文字识别也已经通过验证。少量的高精度实例分割模型暂时不支持,后续我们会给大家介绍ONNX工具包,支持市面上几乎所有的模型。 支持的硬件方面,支持Nvidia GPU、Intel、TPU、NPU多种硬件加速。
更多关于LabVIEW与人工智能技术,可添加技术交流群进一步探讨。qq群号:705637299,请备注暗号:LabVIEW 机器学习
手把手教你使用LabVIEW OpenCV DNN实现手写数字识别(含源码)的更多相关文章
- OpenCV+TensorFlow图片手写数字识别(附源码)
初次接触TensorFlow,而手写数字训练识别是其最基本的入门教程,网上关于训练的教程很多,但是模型的测试大多都是官方提供的一些素材,能不能自己随便写一串数字让机器识别出来呢?纸上得来终觉浅,带着这 ...
- 手把手教你使用LabVIEW OpenCV dnn实现图像分类(含源码)
@ 目录 前言 一.什么是图像分类? 1.图像分类的概念 2.MobileNet简介 二.使用python实现图像分类(py_to_py_ssd_mobilenet.py) 1.获取预训练模型 2.使 ...
- 手把手教你使用LabVIEW OpenCV dnn实现物体识别(Object Detection)含源码
前言 今天和大家一起分享如何使用LabVIEW调用pb模型实现物体识别,本博客中使用的智能工具包可到主页置顶博客LabVIEW AI视觉工具包(非NI Vision)下载与安装教程中下载 一.物体识别 ...
- keras和tensorflow搭建DNN、CNN、RNN手写数字识别
MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件 ...
- 基于OpenCV的KNN算法实现手写数字识别
基于OpenCV的KNN算法实现手写数字识别 一.数据预处理 # 导入所需模块 import cv2 import numpy as np import matplotlib.pyplot as pl ...
- 基于opencv的手写数字识别(MFC,HOG,SVM)
参考了秋风细雨的文章:http://blog.csdn.net/candyforever/article/details/8564746 花了点时间编写出了程序,先看看效果吧. 识别效果大概都能正确. ...
- opencv实现KNN手写数字的识别
人工智能是当下很热门的话题,手写识别是一个典型的应用.为了进一步了解这个领域,我阅读了大量的论文,并借助opencv完成了对28x28的数字图片(预处理后的二值图像)的识别任务. 预处理一张图片: 首 ...
- Pytorch入门——手把手教你MNIST手写数字识别
MNIST手写数字识别教程 要开始带组内的小朋友了,特意出一个Pytorch教程来指导一下 [!] 这里是实战教程,默认读者已经学会了部分深度学习原理,若有不懂的地方可以先停下来查查资料 目录 MNI ...
- 【YOLOv5】手把手教你使用LabVIEW ONNX Runtime部署 TensorRT加速,实现YOLOv5实时物体识别(含源码)
前言 上一篇博客给大家介绍了LabVIEW开放神经网络交互工具包[ONNX],今天我们就一起来看一下如何使用LabVIEW开放神经网络交互工具包实现TensorRT加速YOLOv5. 以下是YOLOv ...
随机推荐
- 开源轻量级工作流WorkflowCore介绍
在.Net Framework环境下,我们使用Windows Workflow Foundation(WF)作为项目的工作流引擎,可是.Net Core已经不支持WF了,需要为基于.Net Core的 ...
- 【每天学一点-02】创建Node.js的第一个应用
1.引入require模块,使用createServer()创建服务器 [server.js]文件 var http = require('http'); http.createServer(func ...
- 基于NoCode构建简历编辑器
基于NoCode构建简历编辑器 基于NoCode构建简历编辑器,要参加秋招了,因为各种模版用起来细节上并不是很满意,所以尝试做个简单的拖拽简历编辑器. 描述 Github | Resume DEMO ...
- Docker非root用户使用
Docker 用户管理 安装Docker后docker相关命令都需要加上sudo才能执行,这里为特定用户添加下权限 Docker群组 不过一般安好docker后该群组已创建 sudo groupadd ...
- 从零开始Blazor Server(3)--添加cookie授权
认证方式简述 Blazor Server微软官方还是推荐直接使用Cookie授权,因为本来Blazor Server就是前后端不分离的.不存在Cookie跨域等一系列问题. 只要不是使用SSO之类的统 ...
- 2510-Druid监控功能的深入使用与配置-基于SpringBoot-完全使用java config的形式
环境 springboot 1.5.9.RELEASE + JDK1.8 配置步骤 分两步,1 配置数据源 2 配置监控 直接上代码 1 配置数据源 package com.company.proje ...
- 用户认证(Authentication)进化之路:由Basic Auth到Oauth2再到jwt
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_98 用户认证是一个在web开发中亘古不变的话题,因为无论是什么系统,什么架构,什么平台,安全性是一个永远也绕不开的问题 在HTTP ...
- Rust 从入门到精通03-helloworld
安装完成 Rust 之后,我们可以编写 Rust 的 Hello Word.这里介绍两种方式,一种是rust原生方式,一种是利用 cargo 工具(重要) 1.rustc 方式 1.1 创建项目目录 ...
- Nginx 集群部署(Keepalived)
# Nginx集群部署 # 当我们的用户同时访问量达到一定量的时候,一台服务器是不够用的 # 这个时候我们需要解决这个问题肯定是要添加新的服务器去处理用户访问 # 多台服务器处理用户访问就需要我们集群 ...
- virtio_net 设备的队列数问题
virtio_net设备的其他问题:见 https://www.cnblogs.com/10087622blog/p/15886345.html 一个virtio_net设备在 virtnet_pro ...