题意:给定 n 和 m 表示要制作一个项链和手镯,项链和手镯的区别就是手镯旋转和翻转都是相同的,而项链旋转都是相同的,而翻转是不同的,问你使用 n 个珠子和 m 种颜色可以制作多少种项链和手镯。

析:一个很明显的 Polya 定理,先考虑旋转,如果逆时针旋转 i 个珠子,那么 0 i 2i 3i ... 是一个循环,这样的话就有 gcd(i, n) 个循环。

对于翻转,要考虑是奇偶,如果是奇数,肯定是要过一个珠子的,所以就一共有 n 个相同的,对于每一个会形成 n/2 个长度为 2 个的循环,和一个长度为 1 的循环(也就是在对称轴上的那个),如果 n 是偶数,那么有两种对称轴一种是过两个珠子,这样的有 n/2 条,形成 n/2-1 个长度为 2 循环,和两个长度为 1 循环(也就是在对称轴上的那两个),再就是不过任何珠子,那么这样的有 n/2 条对称轴,形成 n/2 个的长度为2 的循环。因为题目说了答案不会超过 11 位数字,所以可以用 long long 来解决。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
//#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.in", "r", stdin)
#define freopenw freopen("out.out", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 100 + 10;
const int maxm = 100 + 2;
const LL mod = 100000000;
const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
} LL f[maxn]; int main(){
while(scanf("%d %d", &n, &m) == 2){
f[0] = 1;
for(int i = 1; i <= n; ++i) f[i] = f[i-1] * m;
LL a = 0, b = (n&1) ? n * f[(n+1)/2] : n/2 * (f[n/2+1]+f[n/2]);
for(int i = 0; i < n; ++i) a += f[gcd(i, n)];
printf("%lld %lld\n", a / n, (a+b)/2/n);
}
return 0;
}

  

UVa 10294 Arif in Dhaka (First Love Part 2) (Polya定理)的更多相关文章

  1. Uva 10294 Arif in Dhaka (First Love Part 2)

    Description 现有一颗含\(N\)个珠子的项链,每个珠子有\(t\)种不同的染色.现求在旋转置换下有多少种本质不同的项链,在旋转和翻转置换下有多少种本质不同的项链.\(N < 51,t ...

  2. UVa 10294 Arif in Dhaka (First Love Part 2)(置换)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35397 [思路] Polya定理. 旋转:循环节为gcd(i,n) ...

  3. 【uva 10294】 Arif in Dhaka (First Love Part 2) (置换,burnside引理|polya定理)

    题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. ...

  4. [Uva10294]Arif in Dhaka

    [Uva10294]Arif in Dhaka 标签: 置换 Burnside引理 题目链接 题意 有很多个珠子穿成环形首饰,手镯可以翻转和旋转,项链只能旋转.(翻转过的手镯相同,而项链不同) 有n个 ...

  5. UVa 10294(polya 翻转与旋转)

    Arif in Dhaka(First Love Part 2) Input: standard input Output: standard output Time Limit: 2 seconds ...

  6. UVA 10294 项链与手镯 (置换)

    Burnside引理:对于一个置换\(f\), 若一个着色方案\(s\)经过置换后不变,称\(s\)为\(f\)的不动点.将\(f\)的不动点数目记为\(C(f)\), 则可以证明等价类数目为\(C( ...

  7. UVA10294 Arif in Dhaka (群论,Polya定理)

    UVA10294 Arif in Dhaka (群论,Polya定理) 题意 : 给你一个长为\(n\)的项链和手镯,每个珠子有\(m\)种颜色. 两个手镯定义为相同,即它们通过翻转和旋转得到一样的手 ...

  8. UVa 10294 (Pólya计数) Arif in Dhaka (First Love Part 2)

    Burnside定理:若一个着色方案s经过置换f后不变,称s为f的不动点,将置换f的不动点的数目记作C(f).等价类的数目等于所有C(f)的平均值. 一个项链,一个手镯,区别在于一个能翻转一个不能,用 ...

  9. Arif in Dhaka (First Love Part 2) UVA - 10294(Polya定理)

    这题和POJ-1286一样 题意: 给出t种颜色的n颗珠子 (每种颜色的珠子个数无限制,但总数必须是n), 求能制作出项链和手镯的个数 注意手镯可以翻转和旋转  而 项练只能旋转 解析: 注意Poly ...

随机推荐

  1. xadmin系列之启动、注册、分发

    a.启动首先要加载settings中定义的INSTALLED_APPS列表中的app b.我们进入xadmin的XadminConfig文件 from django.apps import AppCo ...

  2. easyui的dialog

    代码: <div id="titledialos" class="easyui-dialog" title="×××" data-op ...

  3. 畅谈Redis和Memcached的区别

    简述 memcached 和 redis 都很类似:都是内存型数据库,数据保存在内存中,通过tcp直接存取,优势是速度快,并发高,缺点是数据类型有限,查询功能不强,一般用作缓存. 那么题主说 memc ...

  4. memcached 一致性hash原理

    memcache 是一个分布式的缓存系统,但是本身没有提供集群功能,在大型应用的情况下容易成为瓶颈.但是客户端这个时候可以自由扩展,分两阶段实现.第一阶段:key 要先根据一定的算法映射到一台memc ...

  5. CH6802 車的放置

    原题链接 和棋盘覆盖(题解)差不多. 将行和列看成\(n+m\)个节点,且分属两个集合,如果某个节点没有被禁止,则行坐标对应节点向列坐标对应节点连边,然后就是求二分图最大匹配了. #include&l ...

  6. Luogu 2822[NOIP2016] 组合数问题 - 数论

    题解 乱搞就能过了. 首先我们考虑如何快速判断C(i, j ) | k 是否成立. 由于$k$非常小, 所以可以对$k$分解质因数, 接着预处理出前N个数的阶乘的因数中 $p_i$ 的个数, 然后就可 ...

  7. Loadrunner 脚本录制策略

    Loadrunner在脚本录制过程中,我们会先后分别碰见init.action.transaction.end.block等概念.本次打算以图文并茂的形式为大家分别讲解. 以下为一个简要的网站操作逻辑 ...

  8. tiny cc 编译器,tinycc,变种

    去掉了 -run 参数 下载代码和编译好的程序

  9. Ubuntu 双网卡设置

    闲话不多说,直接正题 因为chinanet信号不强,所以买了个usb无线网卡,平常又要做开发,要连着开发板,不知怎么回事,一旦自带无线网卡连上内网的无线路由,就不能访问外网了. 网上搜了好久,终于查到 ...

  10. pkg_resources.DistributionNotFound: The 'catkin-pkg==0.4.9' distribution was not found

    个人感觉是python2与python3在ros中的差异导致的, 问题一:Traceback (most recent call last):  File "/usr/bin/rosdep& ...