题意:给定 n 和 m 表示要制作一个项链和手镯,项链和手镯的区别就是手镯旋转和翻转都是相同的,而项链旋转都是相同的,而翻转是不同的,问你使用 n 个珠子和 m 种颜色可以制作多少种项链和手镯。

析:一个很明显的 Polya 定理,先考虑旋转,如果逆时针旋转 i 个珠子,那么 0 i 2i 3i ... 是一个循环,这样的话就有 gcd(i, n) 个循环。

对于翻转,要考虑是奇偶,如果是奇数,肯定是要过一个珠子的,所以就一共有 n 个相同的,对于每一个会形成 n/2 个长度为 2 个的循环,和一个长度为 1 的循环(也就是在对称轴上的那个),如果 n 是偶数,那么有两种对称轴一种是过两个珠子,这样的有 n/2 条,形成 n/2-1 个长度为 2 循环,和两个长度为 1 循环(也就是在对称轴上的那两个),再就是不过任何珠子,那么这样的有 n/2 条对称轴,形成 n/2 个的长度为2 的循环。因为题目说了答案不会超过 11 位数字,所以可以用 long long 来解决。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
//#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.in", "r", stdin)
#define freopenw freopen("out.out", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 100 + 10;
const int maxm = 100 + 2;
const LL mod = 100000000;
const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
} LL f[maxn]; int main(){
while(scanf("%d %d", &n, &m) == 2){
f[0] = 1;
for(int i = 1; i <= n; ++i) f[i] = f[i-1] * m;
LL a = 0, b = (n&1) ? n * f[(n+1)/2] : n/2 * (f[n/2+1]+f[n/2]);
for(int i = 0; i < n; ++i) a += f[gcd(i, n)];
printf("%lld %lld\n", a / n, (a+b)/2/n);
}
return 0;
}

  

UVa 10294 Arif in Dhaka (First Love Part 2) (Polya定理)的更多相关文章

  1. Uva 10294 Arif in Dhaka (First Love Part 2)

    Description 现有一颗含\(N\)个珠子的项链,每个珠子有\(t\)种不同的染色.现求在旋转置换下有多少种本质不同的项链,在旋转和翻转置换下有多少种本质不同的项链.\(N < 51,t ...

  2. UVa 10294 Arif in Dhaka (First Love Part 2)(置换)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35397 [思路] Polya定理. 旋转:循环节为gcd(i,n) ...

  3. 【uva 10294】 Arif in Dhaka (First Love Part 2) (置换,burnside引理|polya定理)

    题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. ...

  4. [Uva10294]Arif in Dhaka

    [Uva10294]Arif in Dhaka 标签: 置换 Burnside引理 题目链接 题意 有很多个珠子穿成环形首饰,手镯可以翻转和旋转,项链只能旋转.(翻转过的手镯相同,而项链不同) 有n个 ...

  5. UVa 10294(polya 翻转与旋转)

    Arif in Dhaka(First Love Part 2) Input: standard input Output: standard output Time Limit: 2 seconds ...

  6. UVA 10294 项链与手镯 (置换)

    Burnside引理:对于一个置换\(f\), 若一个着色方案\(s\)经过置换后不变,称\(s\)为\(f\)的不动点.将\(f\)的不动点数目记为\(C(f)\), 则可以证明等价类数目为\(C( ...

  7. UVA10294 Arif in Dhaka (群论,Polya定理)

    UVA10294 Arif in Dhaka (群论,Polya定理) 题意 : 给你一个长为\(n\)的项链和手镯,每个珠子有\(m\)种颜色. 两个手镯定义为相同,即它们通过翻转和旋转得到一样的手 ...

  8. UVa 10294 (Pólya计数) Arif in Dhaka (First Love Part 2)

    Burnside定理:若一个着色方案s经过置换f后不变,称s为f的不动点,将置换f的不动点的数目记作C(f).等价类的数目等于所有C(f)的平均值. 一个项链,一个手镯,区别在于一个能翻转一个不能,用 ...

  9. Arif in Dhaka (First Love Part 2) UVA - 10294(Polya定理)

    这题和POJ-1286一样 题意: 给出t种颜色的n颗珠子 (每种颜色的珠子个数无限制,但总数必须是n), 求能制作出项链和手镯的个数 注意手镯可以翻转和旋转  而 项练只能旋转 解析: 注意Poly ...

随机推荐

  1. django的中间件:process_request|process_response|process_view|process_exception

    MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware. ...

  2. spring cloud ribbon和feign的区别

    spring cloud的Netflix中提供了两个组件实现软负载均衡调用:ribbon和feign. Ribbon 是一个基于 HTTP 和 TCP 客户端的负载均衡器 它可以在客户端配置 ribb ...

  3. static 构造函数的认识

    最近,看到一道面试题,如下 class Class1 { ; static Class1() { count++; } public Class1() { count++; } } Class1 on ...

  4. 使用Python3.x抓取58同城(南京站)的演出票的信息

    #!/usr/bin/env python #-*-coding: utf-8 -*- import re import urllib.request as request from bs4 impo ...

  5. 线特征---EDLines原理(六)

    参考文献:EDLines: A real-time line segment detector with a false detection control ----Cuneyt Akinlar  , ...

  6. 1到n的整数中,1出现的次数

    参考链接:https://discuss.leetcode.com/topic/18054/4-lines-o-log-n-c-java-python 1到n的整数中,1出现的次数,如11中,1出现了 ...

  7. bootstrap切换按钮点击后显示的颜色

    点击按钮后将按钮类库切换为值为btn-success ·· test ·· jquery code ·· $(".tag-checkbox").toggleClass(" ...

  8. js分割数字

    var str = "123"; var b = String(str).split(''); 打印b[0].b[1].b[2]看效果...

  9. 安装composer,以及通过composer安装laravel

    1安装composer http://docs.phpcomposer.com/00-intro.html#Installation-Windows中选择windows安装 下载并且运行 Compos ...

  10. Mac下配置域名和网站测试环境

    一.在 /etc/hosts   下配置相关域名 1, control+space  打开spotlight, 搜索“terminal” 2, 打开Terminal 3, 在terminal界面中输入 ...