LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)
哇这题剧毒,卡了好久常数才过T_T
设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \frac{1}{sum+1}*(f(i+1,s')+[s==s'])$
状态数只有$C_{8+3}^3=165$个,所以就可以矩乘优化了。再加上一个用于转移的$1$,矩阵大小是$166*166$的,因为多组询问,所以可以先把$2$的所有次幂的矩阵都预处理出来。
然后会发现复杂度是$O(T*166^3*N)$的,无法承受...
其实答案矩阵只有一列...用它从左往右乘就能把矩阵乘法优化到$O(166^2)$了,总时间复杂度$O(166^3*logn+T*166^2*logn)$。
$16$亿过$2$秒,长见识了...
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=, mod=;
const ll inf=;
struct mtx{int mp[maxn][maxn], n, m;mtx(){memset(mp, , sizeof(mp)); n=m=;}}
base[];
mtx operator * (mtx a, mtx b)
{
mtx c; c.n=a.n; c.m=b.m;
for(int i=;i<=a.n;i++)
for(int j=;j<=b.m;j++)
{
ll s=;
for(int k=;k<=a.m;k++)
s+=1ll*a.mp[i][k]*b.mp[k][j], s>inf && (s%=mod);
c.mp[i][j]=s%mod;
}
return c;
}
int T, m, K, tott;
ll n;
int st[maxn], mi[maxn], pos[<<];
inline int power(int a, int b)
{
int ans=;
for(;b;b>>=, a=1ll*a*a%mod)
if(b&) ans=1ll*ans*a%mod;
return ans;
}
int main()
{
scanf("%d%d%d", &T, &m, &K);
mi[]=; for(int i=;i<=m;i++) mi[i]=mi[i-]*(K+);
for(int i=;i<mi[m];i++)
{
int sum=;
for(int j=;j<m;j++) sum+=i/mi[j]%(K+);
if(sum<=K) st[tott]=i, pos[i]=tott++;
}
base[].mp[tott][tott]=;
base[].n=base[].m=tott;
for(int i=;i<tott;i++)
{
int sum=;
for(int j=;j<m;j++) sum+=st[i]/mi[j]%(K+);
int inv=power(sum+, mod-);
base[].mp[i][tott]=base[].mp[i][i]=inv;
for(int j=;j<m;j++)
if(st[i]/mi[j]%(K+))
{
int x=st[i]-mi[j];
if(j) x+=mi[j-];
if(j && sum<K) x+=mi[m-];
base[].mp[i][pos[x]]=1ll*inv*(st[i]/mi[j]%(K+))%mod;
}
}
for(int i=;i<;i++) base[i]=base[i-]*base[i-];
while(T--)
{
scanf("%lld", &n); mtx ans; ans.n=tott; ans.mp[tott][]=;
int digit=; for(;n;n>>=, digit++) if(n&) ans=base[digit]*ans;
printf("%d\n", ans.mp[pos[mi[m-]]][]);
}
}
LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)的更多相关文章
- loj #2325. 「清华集训 2017」小Y和恐怖的奴隶主
#2325. 「清华集训 2017」小Y和恐怖的奴隶主 内存限制:256 MiB时间限制:2000 ms标准输入输出 题目类型:传统评测方式:文本比较 题目描述 "A fight? Co ...
- 【loj2325】「清华集训 2017」小Y和恐怖的奴隶主 概率dp+倍增+矩阵乘法
题目描述 你有一个m点生命值的奴隶主,奴隶主受伤未死且当前随从数目不超过k则再召唤一个m点生命值的奴隶主. T次询问,每次询问如果如果对面下出一个n点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输 ...
- LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】
LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...
- LOJ2325「清华集训 2017」小Y和恐怖的奴隶主
题目链接 首先dp很显然,\(f(i,s)\)表示到了第i轮,各种血量人数的情况为s今后的期望攻击boss次数.那么有\(f(i,s)=\frac{1}{num+1}*\sum_{s->s'}( ...
- Loj #2324. 「清华集训 2017」小 Y 和二叉树
Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...
- [LOJ#2324]「清华集训 2017」小Y和二叉树
[LOJ#2324]「清华集训 2017」小Y和二叉树 试题描述 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙 ...
- [LOJ#2323]「清华集训 2017」小Y和地铁
[LOJ#2323]「清华集训 2017」小Y和地铁 试题描述 小Y是一个爱好旅行的OIer.一天,她来到了一个新的城市.由于不熟悉那里的交通系统,她选择了坐地铁. 她发现每条地铁线路可以看成平面上的 ...
- 【UOJ#340】【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划)
[UOJ#340][清华集训2017]小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划) 题面 UOJ 洛谷 题解 考虑如何暴力\(dp\). 设\(f[i][a][b][c]\)表示当前到了第\(i\) ...
- LOJ2324. 「清华集训 2017」小 Y 和二叉树【贪心】【DP】【思维】【好】
LINK 思路 首先贪新的思路是处理出以一个节点为根所有儿子的子树中中序遍历起始节点最小是多少 然后这个可以两次dfs来DP处理 然后就试图确定中序遍历的第一个节点 一定是siz<=2的编号最小 ...
随机推荐
- QQ 的一些URI 协议命令
//System.Diagnostics.Process.Start(@"C:\Program Files\Tencent\TIM\Bin\Timwp.exe", "te ...
- Python、pywin32&pycharm安装记录
未完待续-- Python 下载安装 1.百度搜索Python,进入官网,download,下载相应版本 [因为我们需要用到的是Windows下的解释器,所以在Operating System中可以选 ...
- WPF编程,使用WindowChrome实现自定义窗口功能的一种方法。
原文:WPF编程,使用WindowChrome实现自定义窗口功能的一种方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/arti ...
- python 相对路径导入 与 绝对路径导入
我的理解: 假设有一个文件夹 app 若 app 下有app/__init__.py文件,则此 app 被视作一个 package,而 app 下的其他文件/文件夹被视作 module 我们知道,pa ...
- Linux中tty、pty、pts的概念区别 转载
基本概念: > tty(终端设备的统称): tty一词源于Teletypes,或teletypewriters,原来指的是电传打字机,是通过串行线用打印机键盘通过阅读和发送信息的东西,后来这东西 ...
- xml中该使用属性还是元素
XML 中没有规定哪些必须放在属性或者子元素,因此使用哪种方式都是可以实现的.这取决于个人的经验和喜好.在可以使用元素也可以使用属性的两选一的情况下,个人更倾向于使用子元素.主要理由如下: 1. 属性 ...
- 解决SSH登录用户执行的命令部分环境变量参数不生效的问题
问题概况 linux机器在/etc/profile配置完成环境变量后,SSH到目标机器执行命令,但是获取不到已配置的环境变量值. 例如场景: 在/etc/profile配置了http代理 export ...
- HTML 样式 (style) 实例
77.HTML 样式 (style) 实例HTML 的 style 属性style 属性的作用: 提供了一种改变所有 HTML 元素的样式的通用方法. 样式是 HTML 4 引入的,它是一种新的首选的 ...
- JMeter的下载安装以及运行教程
一.安装JMeter的必要准备 1.安装JDK JDK下载地址:https://www.oracle.com/technetwork/java/javase/downloads/index.html ...
- C++基础知识(1)
C语言是结构化编程语言(for循环.while循环.do while循环和if else语句),将低级语言的效率.硬件访问能力和高级语言的通用性.可移植性融合在一起. UNIX编译和链接 UNIX用C ...