import tensorflow as tf

a = tf.random.shuffle(tf.range(5))
a
tf.sort(a, direction='DESCENDING')
# 返回索引
tf.argsort(a, direction='DESCENDING')
idx = tf.argsort(a, direction='DESCENDING')
tf.gather(a, idx)
idx = tf.argsort(a, direction='DESCENDING')
tf.gather(a, idx)
a = tf.random.uniform([3, 3], maxval=10, dtype=tf.int32)
a
tf.sort(a)
tf.sort(a, direction='DESCENDING')
idx = tf.argsort(a)
idx
# 返回前2个值
res = tf.math.top_k(a, 2)
res
res.values
res.indices
prob = tf.constant([[0.1, 0.2, 0.7], [0.2, 0.7, 0.1]])
target = tf.constant([2, 0])
# 概率最大的索引在最前面
k_b = tf.math.top_k(prob, 3).indices
k_b
k_b = tf.transpose(k_b, [1, 0])
k_b
# 对真实值broadcast,与prod比较
target = tf.broadcast_to(target, [3, 2])
target
def accuracy(output, target, topk=(1, )):
maxk = max(topk)
batch_size = target.shape[0] pred = tf.math.top_k(output, maxk).indices
pred = tf.transpose(pred, perm=[1, 0])
target_ = tf.broadcast_to(target, pred.shape)
correct = tf.equal(pred, target_) res = []
for k in topk:
correct_k = tf.cast(tf.reshape(correct[:k], [-1]), dtype=tf.float32)
correct_k = tf.reduce_sum(correct_k)
acc = float(correct_k / batch_size)
res.append(acc) return res
# 10个样本6类
output = tf.random.normal([10, 6])
# 使得所有样本的概率加起来为1
output = tf.math.softmax(output, axis=1)
# 10个样本对应的标记
target = tf.random.uniform([10], maxval=6, dtype=tf.int32)
print(f'prob: {output.numpy()}')
pred = tf.argmax(output, axis=1)
print(f'pred: {pred.numpy()}')
print(f'label: {target.numpy()}') acc = accuracy(output, target, topk=(1, 2, 3, 4, 5, 6))
print(f'top-1-6 acc: {acc}')

吴裕雄--天生自然TensorFlow2教程:张量排序的更多相关文章

  1. 吴裕雄--天生自然TensorFlow2教程:测试(张量)- 实战

    import tensorflow as tf from tensorflow import keras from tensorflow.keras import datasets import os ...

  2. 吴裕雄--天生自然TensorFlow2教程:张量限幅

    import tensorflow as tf a = tf.range(10) a # a中小于2的元素值为2 tf.maximum(a, 2) # a中大于8的元素值为8 tf.minimum(a ...

  3. 吴裕雄--天生自然TensorFlow2教程:前向传播(张量)- 实战

    手写数字识别流程 MNIST手写数字集7000*10张图片 60k张图片训练,10k张图片测试 每张图片是28*28,如果是彩色图片是28*28*3-255表示图片的灰度值,0表示纯白,255表示纯黑 ...

  4. 吴裕雄--天生自然TensorFlow2教程:手写数字问题实战

    import tensorflow as tf from tensorflow import keras from keras import Sequential,datasets, layers, ...

  5. 吴裕雄--天生自然TensorFlow2教程:函数优化实战

    import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def himme ...

  6. 吴裕雄--天生自然TensorFlow2教程:反向传播算法

  7. 吴裕雄--天生自然TensorFlow2教程:链式法则

    import tensorflow as tf x = tf.constant(1.) w1 = tf.constant(2.) b1 = tf.constant(1.) w2 = tf.consta ...

  8. 吴裕雄--天生自然TensorFlow2教程:多输出感知机及其梯度

    import tensorflow as tf x = tf.random.normal([2, 4]) w = tf.random.normal([4, 3]) b = tf.zeros([3]) ...

  9. 吴裕雄--天生自然TensorFlow2教程:单输出感知机及其梯度

    import tensorflow as tf x = tf.random.normal([1, 3]) w = tf.ones([3, 1]) b = tf.ones([1]) y = tf.con ...

随机推荐

  1. python编写的banner获取代码的两种方式

    1.无选项和帮助信息 #!/usr/bin/env python #coding:utf-8 import socket import sys import os from threading imp ...

  2. UVALive 6853(dp)

    题意:已知有n个城市,某歌手每月进行一场演唱会,共持续c个月,可连续两个月在同一个城市.城市间的路费已给出,且已知每个城市在第k(1<=k<=c)个月举办演唱会的所得利润,求最终的最大利润 ...

  3. JVM配合IDEA远程调试

    前言 如果测试环境中运行的jar包项目报错,需要排错时,会不太方便,这个时候就可以通过远程调试的方式,在本地打断点的方式进行调试 正文 一.首先,运行测试环境的jar包需要加以下参数: java -j ...

  4. [Codeforces] #603 (Div. 2) A-E题解

    [Codeforces]1263A Sweet Problem [Codeforces]1263B PIN Code [Codeforces]1263C Everyone is a Winner! [ ...

  5. 查看Python安装目录 -- 一个命令

    pip --version

  6. espcms P8.19082801 vulnerability

    author: naiquan chai Net name:Hanamizuki花水木 Through  the vulnerability  we can get the webshell if w ...

  7. ubuntu18.04.2 Hadoop伪集群搭建

    准备工作: 若没有下载vim请下载vim 若出现 Could not get lock /var/lib/dpkg/lock 问题请参考: https://jingyan.baidu.com/arti ...

  8. face_recognition实时人脸识别

    具体安装移步:https://www.cnblogs.com/ckAng/p/10981025.html 更多操作移步:https://github.com/ageitgey/face_recogni ...

  9. TCP/IP 三次握手,四次断开

    TCP/IP 三次握手,四次断开 一.TCP报文格式                     TCP/IP协议的详细信息参看<TCP/IP协议详解>三卷 本. 下面是TCP报文格式图: 图 ...

  10. Java 日期与时间

    章节 Java 基础 Java 简介 Java 环境搭建 Java 基本语法 Java 注释 Java 变量 Java 数据类型 Java 字符串 Java 类型转换 Java 运算符 Java 字符 ...