1.现状

(1) 模型层数加深

(2) 模型参数量变大

(3) 难以训练

(4) 难以fine-tune

2. 单层参数量和占用内存分析

参数设置 参数量与占用内存
1 layer 0.5Billion 0.5Billion * 4Byte = 2GB
embedding layer

64K tokens

1024 emb_size

8 batch_size

参数量 64K × 1K × 8 = 0.5B

内存 2GB

3. Transformer 模型内存占用的问题以及Reformer相应解决方案

Transformer 内存占用的问题 Reformer采用的方案 实现的效果 对模型的影响  
memory(N layer) > N * memory(1 layer)  → 需要为反向传播保留值

Reversible layers

保留N层activations → 保留1层

negligible

 
feed-forward 层 d_ff >> d_model, 占据大量内存

split activation &&

process in chunks

d_ff → 每个chunk中处理的维度

numerically identical

 
Attention 运算: O(L^2):存储 && 计算开销都很大

Locality-Sensitive Hashing

局部敏感哈希,简称 LSH

O(L^2)  → O(L log L)

可以更好的处理长序列

major change

 

4. Attention → LSH

4.1 Recall Attention && Thoughts

(1) dot-product attention && multi-head attention

Q, K, V [batch_size, length, d_model]

QK^T → [batch_size, length, length]

ex. length = 64K  → 64K * 64K * 4Byte = 16GB → 该部分占用内存过大

(2) 对公式 (1) 的优化思路:

(a) 优化QK^T

→ 4.2 把大矩阵运算降低为向量矩阵运算;

→ 4.3 Q = K

(b) 优化 softmax(x)

→ 4.4 softmax更关注x中数值大的那些元素,在这里也就是只找和q_i 相似的那些 k_j,它们点积值更大,而其他元素被忽略不参与计算节省开销。

→ 4.5 但是如何判断哪些k_j 和 q_i 更相近呢? 这里引入LSH的思想。

→ 4.6 如何将LSH应用于Attention? LSH Attention

→ 4.7 用一轮hash,有些相近元素并不能hash到一个桶里 →  多来几轮hash取并集 Multi-round LSH attention

4.2 优化QK^T → Memory-efficient attention

QK^T → q_iK^T   => 对每个query单独计算,而无需计算整个大矩阵乘积

4.3 优化QK^T → Shared-QK Transformer (Q = K)

Transformer Reformer (LSH attention)

A → linear projection 1 → Q

A → linear projection 2 → K

A → linear projection 3 → V

A → linear projection 1 → Q

A → linear projection 1 → K

A → linear projection 3 → V

4.4 优化softmax(x) → Hashing Attention

QK^T只是一个中间值,我们最关注的还是softmax之后的这个结果。

softmax 更关注大数值的元素,对于length = 64K, 我们找到和q_i 最相近的32/64个 k_j,即可 大大降低计算消耗。

4.5 优化softmax(x) → Locality sensitive hashing 

(1) LSH

相近的向量vectors被hash到同一个bucket的概率大。

(2) hash函数如何选?

为了得到b个hash值,我们首先固定一个随机矩阵R [d_k, b/2]

定义:h(x) = arg max([xR; −xR]) 

LSH scheme  Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P. Razenshteyn, and Ludwig Schmidt. Practical and optimal LSH for angular distance. CoRR, abs/1509.02897, 2015. URL http://arxiv. org/abs/1509.02897.

4.6 优化softmax(x) → LSH Attention 

有了LSH机制,如何应用于Attention?

→ 

→ 

其中,

Figure 2

(a) Normal → sparse

(b) Bucketed → q, k 根据它们hash值是否相同进行排序。颜色相同的hash值相同。

因为hash值相同的vector接近,所以将(a)中对所有vector两两点积可以近似替换为只对bucket内部vector计算点积。

(c) Q = K 

→ 问题:每个bucket中q, k 个数可能不相等,不好计算。

→ 解决方法:

首先通过设定 kj = q_j / ||q_j||  来保证:h(k_j) = h(q_j)

根据bucket number 来sort bucket

在bucket 内部根据 seqence position 来sort。i → s_i

→ 效果:bucket中的pair 集中在对角附近。

(d) Chunked

如何chunk?

chunk个数: m = 2l / n_{buckets} 其中l是序列长度

每个bucket平均size = l / n_{buckets} → 认为size变为2倍大不太容易 → 不容易超过chunk大小

4.7 优化softmax(x) → Multi-round LSH attention

用一轮hash,有些相近元素并不能hash到一个桶里 →  多来几轮hash取并集

并行来做

4.8 Causal masking for shared-QK attention

Transformer中原有的mask: mask后面的元素

LSH attention中元素顺序变化,公式(3)mask如何实现?

为每个query, key加入position index,根据与原来一样的排列重新排序,用一个比较的操作来实现mask.

4.9 复杂度分析

4l?

4.10 实验效果

5. Reversible Transormer

5.1 Recall RevNets   

反向传播求导:F = AX^T

F对A求梯度:X  → 每层的输入

所以获取每层的输入值很重要~~

 ~ The Reversible Residual Network: Backpropagation Without Storing Activations

residual layer 类型 输入输出 form 反向传播计算梯度时输入值来源
Normal residual layer x → y y = x + F(x) 正向传播时每层保留
reversible residual layer (x1, x2) → (y1, y2)

y1 = x1 + F(x2)

y2 = x2 + G(y1)

根据上一层activations推理获得

x2 = y2 −G(y1)

x1 = y1 − F(x2)

5.2 Reversible Transformer  

如何将reversible residual layer思想应用于Transformer?

 ~ Attention is all you need

reversible residual layer Transformer
y1 = x1 + F(x2) Y1 = X1 + Attention(X2)
y2 = x2 + G(x1) Y2 = X2 + FeedForward(Y1)

5.3 Chunking

→ 问题:5.2 是对各个残差层进行的优化,但是在每个残差层内部,FeedForward占用内存也很高。

ex. Attention is all you need 中 dff = 2048 >> d_model = 512

→ 解决方法:由于FeedForward层对于sequence的各个position是独立的,所以可以分解为c个chunk

在5.2中FeedForward层:

→ 这里对FeedForward层进行chunk,相应的也要对reversible的正向和反向计算都要chunk。

→ 对于vocab非常大的情况,对output的log概率计算也chunk,并且会计算那个section sequence的loss.

5.4 复杂度分析

6. 他山之石

Reformer中并没有提出一种全新的算法,但是却对以往算法提出了适合Transformer模型的应用。

LSH本来用于大规模向量中求相近向量,reformer中用于softmax中 找与qi 相近的 kj向量,并根据attention计算的需要,设计了LSH attention。

Reversible resnet 本来用于ResNet, 这里替换了F, G函数为 Attention 和 FeedForward;

Chunk思想也广为人知,这里用于 FeedForward 矩阵的分解。

综合起来,这些技术对于Transformer模型降低存储与计算开销有非常大的帮助。

7. 参考文献

(1) Reformer:Kitaev, Nikita, Łukasz Kaiser, and Anselm Levskaya. "Reformer: The efficient transformer.arXiv preprint arXiv:2001.04451 (2020).

(2) LSH相关:Andoni, Alexandr, et al. "Practical and optimal LSH for angular distance.Advances in neural information processing systems. 2015.

(3) LSH相关:CS369G: Algorithmic Techniques for Big Data. Lecture 16: Approximate Nearest Neighbor Search. Spring 2015-2016

(4) LSH相关:CS369G: Algorithmic Techniques for Big Data. Lecture 17: Locality Sensitive Hashing and Dimension Reduction. Spring 2015-2016

(5) Reversible ResNet: Gomez, Aidan N., et al. "The reversible residual network: Backpropagation without storing activations.Advances in neural information processing systems. 2017.

(6) Transformer: Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

(7) Reformer Pytorch Github: https://github.com/lucidrains/reformer-pytorch

[NLP] REFORMER: THE EFFICIENT TRANSFORMER的更多相关文章

  1. [笔记] Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

    原文地址:https://arxiv.org/abs/2012.07436 源码地址:https://github.com/zhouhaoyi/Informer2020

  2. X-former:不止一面,你想要的Transformer这里都有

    原创作者 | FLPPED 参考论文: A Survey of Transformers 论文地址: https://arxiv.org/abs/2106.04554 研究背景: Transforme ...

  3. Bert不完全手册9. 长文本建模 BigBird & Longformer & Reformer & Performer

    这一章我们来唠唠如何优化BERT对文本长度的限制.BERT使用的Transformer结构核心在于注意力机制强大的交互和记忆能力.不过Attention本身O(n^2)的计算和内存复杂度,也限制了Tr ...

  4. 模型压缩95%:Lite Transformer,MIT韩松等人

    模型压缩95%:Lite Transformer,MIT韩松等人 Lite Transformer with Long-Short Range Attention Zhanghao Wu, Zhiji ...

  5. (zhuan) Recurrent Neural Network

    Recurrent Neural Network 2016年07月01日  Deep learning  Deep learning 字数:24235   this blog from: http:/ ...

  6. MindSpore应用目标

    MindSpore应用目标 以下将展示MindSpore近一年的高阶计划,会根据用户的反馈诉求,持续调整计划的优先级. 总体而言,会努力在以下几个方面不断改进. 1. 提供更多的预置模型支持. 2. ...

  7. AAAI 2021 最佳论文公布

    ​ 作者:Synced 翻译:仿佛若有光 第三十五届 AAAI 人工智能会议 (AAAI-21) 以虚拟会议的形式拉开帷幕.组委会在开幕式上公布了最佳论文奖和亚军.三篇论文获得了最佳论文奖,三篇被评为 ...

  8. [NLP] 相对位置编码(一) Relative Position Representatitons (RPR) - Transformer

    对于Transformer模型的positional encoding,最初在Attention is all you need的文章中提出的是进行绝对位置编码,之后Shaw在2018年的文章中提出了 ...

  9. NLP学习(5)----attention/ self-attention/ seq2seq/ transformer

    目录: 1. 前提 2. attention (1)为什么使用attention (2)attention的定义以及四种相似度计算方式 (3)attention类型(scaled dot-produc ...

随机推荐

  1. Java实现十六进制转十进制

    基础练习 十六进制转十进制 时间限制:1.0s 内存限制:512.0MB 提交此题 锦囊1 锦囊2 问题描述 从键盘输入一个不超过8位的正的十六进制数字符串,将它转换为正的十进制数后输出. 注:十六进 ...

  2. Java实现 LeetCode 382 链表随机节点

    382. 链表随机节点 给定一个单链表,随机选择链表的一个节点,并返回相应的节点值.保证每个节点被选的概率一样. 进阶: 如果链表十分大且长度未知,如何解决这个问题?你能否使用常数级空间复杂度实现? ...

  3. Java实现 蓝桥杯VIP 算法提高 3-3求圆面积表面积体积

    算法提高 3-3求圆面积表面积体积 时间限制:1.0s 内存限制:256.0MB 问题描述 接受用户输⼊的数值,输出以该值为半径的(1)圆面积,(2)球体表面积,(3)球体体积.pi 取值3.1415 ...

  4. SQL Server实现 LeetCode 178 分数排名

    178. 分数排名 SQL架构 编写一个 SQL 查询来实现分数排名.如果两个分数相同,则两个分数排名(Rank)相同.请注意,平分后的下一个名次应该是下一个连续的整数值.换句话说,名次之间不应该有& ...

  5. Android如何使用SharedPreferences轻量级储存

    SharedPreferences只能用来存一些基本数据类型,并且存下的量比较小 直接附代码 和XMl布局 package com.example.okhttpdemo; import android ...

  6. java实现最近距离

    已知平面上的若干点的位置,存入一个List中.现在需要计算所有这些点中, 距离最近的两个点间的最小距离.请补全缺失的代码. 把填空的答案(仅填空处的答案,不包括题面)存入考生文件夹下对应题号的&quo ...

  7. java实现第七届蓝桥杯凑算式

    凑算式 凑算式 B DEF A + - + ------- = 10 C GHI (如果显示有问题,可以参见[图1.jpg]) 这个算式中AI代表19的数字,不同的字母代表不同的数字. 比如: 6+8 ...

  8. 基于ABP做一个简单的系统——实战篇:1.项目准备

    现阶段需要做一个小项目,体量很小,业务功能比较简单,就想到用最熟悉的.net来做,更何况现在.net core已经跨平台,也可以在linux服务器上部署.所以决定用.net core 3.1+mysq ...

  9. 分布式锁没那么难,手把手教你实现 Redis 分布锁!|保姆级教程

    书接上文 上篇文章「MySQL 可重复读,差点就让我背上了一个 P0 事故!」发布之后,收到很多小伙伴们的留言,从中又学习到很多,总结一下. 上篇文章可能举得例子有点不恰当,导致有些小伙伴没看懂为什么 ...

  10. 00-03.kaliLinux-vi粘贴复制功能配置

    KaliLinux在xShell的vim中默认是无法复制和粘贴的,需要做如下配置后才能使用: 方法一 进入vim命令行模式,输入: :set mouse=c #进入Command-line 模式 然后 ...