感觉这类问题很少?算了,还是拿出来水一下吧qwq...


首先来看一道例题:POJ3585

一句话题意:树上任意源点多汇点最大流

你看这不就是个最大流的板子题吗?我先建个图,然后跑最大流,然后,,,然后?

然后

All the elements are nonnegative integers no more than 200000.

还多测... mdzz

好了来讲换根吧。

首先有一个暴力\(dp\),我们先考虑以\(rt=1\)的情况(\(1\)为根),令\(dp[x]\)表示\(rt\)为根时,直接往节点\(x\)灌水,然后向\(x\)的子树内流的最大流量

有如下转移

\[dp[x] = \sum\limits_{v \in son_x} \min\{dp[v], w(x,v)\}
\]

特别的,如果\(v\)在\(1\)为根的情况下是叶节点的话,\(dp[x] += w(x,v)\)(\(w(x,y)\)表示边\((x,y)\)的容量)

然后\(O(n)\)枚举\(rt\),再\(O(n)\)dp,就可以收获一个\(n^2\)的优秀做法。

发现换根过后树的变化实际上没有那么大,我们令\(f[x]\)表示\(rt=x\)时的\(dp[x]\)。

考虑把\(rt\)换到\(x\)的一个儿子\(v\)上,由于\(x\)为根的时候\(v\)也是\(x\)的一个儿子,所以\(v\)会对\(f[x]\)产生\(min(dp[v],w(x,v))\)的贡献

那么\(f[x]-min(dp[v],w(x,v))\)就得到了除了子树\(v\)以外的部分,它在换根后会成为\(v\)的一棵子树

所以\(f[v] = dp[v]+min\left(w_{x,v},f[x]-min(dp[v],w_{x,v})\right)\)(嘛...括号太多看不清楚...所以这里就直接\(w_{x,v}\)了qwq)

需要特判\(x\)只有\(v\)一个儿子的时候\(f[v] = dp[v]+w_{x,v}\)(就直接从\(v\)流向\(x\)了)

所以Code

#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <iostream>
#include <set>
#include <map>
#include <vector>
#include <queue>
using namespace std;
#define fore(i,x) for(int i=head[x],v=e[i].to,w=e[i].w;i;i=e[i].nxt,v=e[i].to,w=e[i].w)
const int N=3e5+10;
struct edge
{
int to,nxt,w;
}e[N<<1];
int head[N],cnt;
inline void ade(int x,int y,int w)
{e[++cnt]=(edge){y,head[x],w},head[x]=cnt;}
inline void addedge(int x,int y,int w)
{ade(x,y,w),ade(y,x,w);}
int n,sum[N],f[N],deg[N]; // 这里的sum就是上面的dp辣
void dfs(int x,int prev)
{
fore(i,x) if(v!=prev)
{
dfs(v,x);
if(deg[v]==1) sum[x]+=w;
else sum[x]+=min(sum[v],w);
}
}
void getans(int x,int prev)
{
fore(i,x) if(v!=prev)
{
if(deg[x]==1) f[v]=sum[v]+w;
else f[v]=sum[v]+min(f[x]-min(sum[v],w),w);
getans(v,x);
}
}
void sol()
{
memset(deg,0,sizeof(deg));
memset(sum,0,sizeof(sum));
memset(f,0,sizeof(f));
memset(head,0,sizeof(head));
memset(e,0,sizeof(e));
cnt=0;
scanf("%d",&n);
for(int x,y,w,i=1;i<n;i++)
{
scanf("%d%d%d",&x,&y,&w);
addedge(x,y,w);
++deg[x],++deg[y];
}
dfs(1,0);
f[1]=sum[1],getans(1,0);
int ans=0;
for(int i=1;i<=n;i++)ans=max(ans,f[i]);
printf("%d\n",ans);
}
int main()
{
int T; scanf("%d",&T); while(T--)sol();
return 0;
}

于是再来看一道题:LuoguP3478

同样换根,令\(f[x]\)表示\(x\)为根时的所有节点的深度和。

考虑将根换到\(x\)的一个儿子\(v\)上,那么对于子树\(v\)里面的节点,他们的深度会减少\(1\),其他节点深度会加上\(1\),即(\(size_v\)表示\(v\)以\(1\)为根时的子树大小)

\[f[v]=f[x]+n-size_v-size_v=f[x]+n-2\times size_v
\]

先以\(1\)为根求出\(size\),然后换根就好了

十年OI一场空,不开long long见祖宗

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define fore(i,x) for(int i=head[x],v=e[i].to;i;i=e[i].nxt,v=e[i].to)
const int N=1e6+10;
int n;
struct edge
{
int to,nxt;
}e[N<<1];
int head[N],cnt=0;
inline void ade(int x,int y)
{e[++cnt]=(edge){y,head[x]},head[x]=cnt;}
inline void addedge(int x,int y)
{ade(x,y),ade(y,x);}
ll f[N],dep[N];
int siz[N];
void dfs(int x,int prev,int deep)
{
dep[x]=deep,siz[x]=1;
fore(i,x) if(v!=prev)
dfs(v,x,deep+1),siz[x]+=siz[v];
}
void getans(int x,int prev)
{
fore(i,x) if(v!=prev)
{
f[v]=f[x]+n-2ll*siz[v];
getans(v,x);
}
}
int main()
{
scanf("%d",&n);
for(int i=1,x,y;i<n;i++)
scanf("%d%d",&x,&y),addedge(x,y);
dfs(1,0,0);
for(int i=1;i<=n;i++) f[1]+=dep[i];
getans(1,0);
ll mx=0; int ans=0;
for(int i=1;i<=n;i++)
if(f[i]>mx) mx=f[i],ans=i;
printf("%d\n",ans);
return 0;
}

换根dp的更多相关文章

  1. [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]

    题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...

  2. 2018.10.15 NOIP训练 水流成河(换根dp)

    传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...

  3. 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市

    P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...

  4. 小奇的仓库:换根dp

    一道很好的换根dp题.考场上现场yy十分愉快 给定树,求每个点的到其它所有点的距离异或上m之后的值,n=100000,m<=16 只能线性复杂度求解,m又小得奇怪.或者带一个log像kx一样打一 ...

  5. 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)

    题意 ​ 题目链接:https://www.luogu.org/problem/P4827 ​ 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...

  6. Acesrc and Travel(2019年杭电多校第八场06+HDU6662+换根dp)

    题目链接 传送门 题意 两个绝顶聪明的人在树上玩博弈,规则是轮流选择下一个要到达的点,每达到一个点时,先手和后手分别获得\(a_i,b_i\)(到达这个点时两个人都会获得)的权值,已经经过的点无法再次 ...

  7. bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp

    题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...

  8. codeforces1156D 0-1-Tree 换根dp

    题目传送门 题意: 给定一棵n个点的边权为0或1的树,一条合法的路径(x,y)(x≠y)满足,从x走到y,一旦经过边权为1的边,就不能再经过边权为0的边,求有多少边满足条件? 思路: 首先,这道题也可 ...

  9. [Bzoj3743][Coci2015] Kamp【换根Dp】

    Online Judge:Bzoj3743 Label:换根Dp,维护最长/次长链 题目描述 一颗树n个点,n-1条边,经过每条边都要花费一定的时间,任意两个点都是联通的. 有K个人(分布在K个不同的 ...

  10. 洛谷$P3647\ [APIO2014]$连珠线 换根$dp$

    正解:换根$dp$ 解题报告: 传送门! 谁能想到$9102$年了$gql$居然还没写过换根$dp$呢,,,$/kel$ 考虑固定了从哪个点开始之后,以这个点作为根,蓝线只可能是直上直下的,形如&qu ...

随机推荐

  1. CSS如何实现三列布局?如果两端固定、中间是自适应又该如何做?

    使用浮动布局来实现 左侧元素与右侧元素优先渲染,分别向左和向右浮动 中间元素在文档流的最后渲染,并将 width 设为 100%,则会自动压到左右两个浮动元素的下面,随后在中间元素中再添加一个div元 ...

  2. 自定义sort排序

    java的sort自定义: 1.排序对象必须是封装类而不能是基本数据类型: 2.调用Arrays.sort(array, left, right, cmp)进行排序,array为数组,left.rig ...

  3. Nginx配置详解 http://www.cnblogs.com/knowledgesea/p/5175711.html

    Nginx配置详解 序言 Nginx是lgor Sysoev为俄罗斯访问量第二的rambler.ru站点设计开发的.从2004年发布至今,凭借开源的力量,已经接近成熟与完善. Nginx功能丰富,可作 ...

  4. PHP再学习5——RESTFul框架 远程控制LED

    0.前言     去年(2013年)2月第一次接触yeelink平台,当时该平台已经运行了一些时间也吸引了不少极客.试想自己也将投身IoT(物联网)行业,就花了些时间研究了它.陆陆续续使用和研究了一年 ...

  5. asp.net+bootstrap上传图片+FileUpload控件文件上传下载

    ps:我数据库使用的pgsql,看个人修改. 代码asp.net 的,使用了mootools框架,里面包含了bootstrap上传图片,查看预览,还加了个上传任意文件的FileUpload.(界面随便 ...

  6. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 按钮:禁用状态

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  7. HiBench成长笔记——(4) HiBench测试Spark SQL

    很多内容之前的博客已经提过,这里不再赘述,详细内容参照本系列前面的博客:https://www.cnblogs.com/ratels/p/10970905.html 和 https://www.cnb ...

  8. Noip2018普及组初赛试题解题报告

    解题思路: 一.单项选择题 (答案:DDDBBAAAABABBBB) 1.除D外,其余均为输入设备. 2.除D外,其余都等于(617)10 ,D选项为(619)10. 3.1MB=1024KB=102 ...

  9. DRF项目之自定义分页器

    在项目中,我们多需要自定义分页器. 代码实现: class PageNum(PageNumberPagination): '''自定义分页器''' # 每页显示个数 page_size = 10 pa ...

  10. Intellij IDEA中配置TFS

    TFS是微软推出的一款研发过程管理利器,C#阵营的VS里做了默认集成,但是对于Java阵营的Intellij IDEA,需要安装插件并进行相应配置才能使用: 1.打开配置 2.搜索并安装插件 3.配置 ...