在当下经济明显进入存量博弈的阶段,大到各经济体,小到企业,粗放的增长模式已不适宜持续,以往高增长的时代已经成为过去,亟需通过变革发掘新的增长点。对于竞争激烈的线下零售行业而言,则更需如此。

零售行业一般涉及的环节众多,包括商品选品、采购、库存、渠道、促销等等。如何寻找核心点打通整条链路上的各环节,提升经营效率,增加盈利呢?我们给出的答案就是围绕人的精准需求预测。

人是新零售人货场的核心,也是线下零售企业最重要的资源。通过以精准需求预测为中心,拉通供应链上各环节,产生协同效应以提升经营效率。精准的需求预测,能帮助零售企业变以往粗放被动的经营方式为精准主动的经营方式,做到比顾客更懂顾客,从而更好地服务客户及挖掘顾客价值,最终增加盈利。

线下零售行业很多环节的需求决策,例如生鲜行业每个类目每日进货量、服饰行业中的企划选款与订货量等,往往依赖人工总结经验规律,而人工经验的精准性不够会导致诸如服饰行业中,选款定量造成的畅销品断货滞消品积压问题、生鲜行业中货损严重问题等。

奇点云在上述行业中积累了较为丰富的需求预测落地经验,帮助它们建立需求拉动的敏捷供应链,提升经营效率。下部分我们将重点介绍我们的需求预测平台。

奇点云需求预测平台

数字化能力

要实现精准需求预测,数据能力(包括数据采集加工、数据治理、数据资产及数据建模等)是其关键支撑。在当下,数据已经成为各行各业重要的生产资料,其重要性再怎么强调也不为过。对线下零售行业而言,顾客数据是其最重要的虚拟资产,是需要投入资源重点经营的。奇点云结合自研的DataSimba大数据服务平台和业界领先的视觉智能引擎,全面获取线上线下顾客数据,并识别汇总同一顾客数据,为下阶段顾客精准需求预测打下坚实的数据基础。

AI算法能力

要做到精准的需求预测是极具挑战的事,影响需求的因素众多,包括商品品类信息、价格、折扣、促销、节假日、天气、季节、地域差异等等。以促销为例,促销活动会导致需求的剧烈波动,从图中可以看到,促销打折在假期及平日,周末,早晚均有不同的表现。

奇点云预测引擎是建立在数据中台之上,通过业务建模对齐业务数据评估指标,将需要预估判断的业务痛点转化为预测类的算法问题。以业务评估指标为导向,结合不同分类准确度指标(如召回、精度、F1-Score)及不同回归拟合准确度指标(如MSE、MAPE、WAPE)等,对时序序列算法(ARIMA、Holt-Winter、fbProphet)、 机器学习算法(SVM、GBDT、lightGBM、xgboost、catboost)及深度学习算法(RNN、LSTM等)进行baseline建模,再根据不同的场景、数据分布情况进行分层建模及模型融合,最后根据部署环境进行综合选择上线模型。完整的需求预测流程如下图:

在算法建模实践中,可对时序序列数据进行挖掘分析,对不同特性(如数据多寡、波动大小、销量高低、频率等)的数据可以分别建模,之后进行模型融合。针对模型融合,也可以尝试将机器学习和深度学习结合,例如在一些峰值预测场景,机器学习预测的结果偏保守,而深度学习预测的偏激进,两者的结合能更好地提升预测精度。

奇点云AI算法平台

案例

基于上文奇点云预测引擎的方案及架构,奇点云在生鲜、服饰及烟草等领域积累了较多的预测实战经验,下面结合一个生鲜行业具体案例介绍预测引擎如何助力线下零售业降本增效。

某社区连锁超市企业,其生鲜销售额占比超过一半。生鲜对新鲜度要求很高,这就需要保持合适的店内排面库存和在途库存。

原先它的生鲜需求量是基于人工经验来预估的,一般为了保证尽量不缺货,提升顾客的消费体验,往往会过高的估计进货量,这会导致未及时销售的蔬菜水果等只能低价处理或者清理掉,耗损率很高。

奇点云在深入了解客户业务现状及需求后,与客户一起梳理对齐关键业务指标(如正毛利率、损耗率等),在此基础上,结合会员、销售、损耗评估、缺货还原等业务数据以及节假日、天气、附近商圈居民区等数据,对无约束的需求进行了预测。以正毛利率这个指标为例,在上线测试对比中,奇点云算法模型上线的门店正毛利率从上线前的87%提升到了上线后92%,且上线后基本稳定在90%以上,其它未上线门店的正毛利率则继续在87%左右,部分门店甚至在80%以下,且波动极大。下图是蔬菜类目下其中一个小类(销量占总体2%左右)的试运行前两周的关键指标提升情况:

从上图可以看出,通过使用奇点云需求预测引擎,业务关键指标得到了较好的改善,客户整体盈利得到提升,这也正是奇点云通过AI赋能线下零售企业,让商业更智能的目的所在。

结语

客户的需求是终点,以终为始,我们以顾客需求预测为切入点来帮助企业降本增效,目前也取得了不错的开端,未来我们也会持续提升服务能力,实现让商业更智能的使命。

 

StartDT AI Lab | 需求预测引擎如何助力线下零售业降本增效?的更多相关文章

  1. StartDT AI Lab | 视觉智能引擎——Re-ID赋能线下场景顾客数字化

    人货场的思路是整个新零售数字化链路的核心,人是整个业务生命周期的起始点,图像算法的首要目标就是从图像中得到“人” .前一篇我们主要讲了Face ID的发展,Face ID帮助商家赋能了线下用户画像,把 ...

  2. StartDT AI Lab | 智能运筹助力企业提升决策效率、优化决策质量

    在人工智能和大数据时代,越来越多的云上数据和越来越智能的模型开始辅助人们做出各种最优决策,从运营效率.成本节约.最优配置等方方面面,实现降本增效,进一步提升商业效率.京东.美团.滴滴.顺丰等众多知名厂 ...

  3. StartDT AI Lab | 视觉智能引擎——从Face ID说起,浅析顾客数字化

    “顾客就是上帝”,这句西谚揭示了顾客占据着商业活动中心地位这一客观规律.为了能更好地服务顾客,优化商家自身的服务与产品,对顾客的分析与需求调研一直是商业经营分析中的重中之重. 在商业互联网化.社会数字 ...

  4. StartDT AI Lab | 视觉智能引擎之算法模型加速

    通过StartDT AI Lab专栏之前多篇文章叙述,相信大家已经对计算机视觉技术及人工智能算法在奇点云AIOT战略中的支撑作用有了很好的理解.同样,这种业务牵引,技术覆盖的模式也收获了市场的良好反响 ...

  5. StartDT AI Lab | 数据增强技术如何实现场景落地与业务增值?

    有人说,「深度学习“等于”深度卷积神经网络算法模型+大规模数据+云端分布式算力」.也有人说,「能够在业内叱咤风云的AI都曾“身经百战”,经历过无数次的训练与试错」.以上都需要海量数据做依托,对于那些数 ...

  6. StartDT AI Lab | 视觉智能引擎+数据决策引擎——打造商业“智能沙盘”

    众所周知,线上商家可以通过淘宝平台的大量前端“埋点”轻松获取商品的加购率.收藏率.转化率.成交额等大量基础信息,甚至商家能够在更精细的层面,获取商品关键字变化或者上新/爆款带来的流量变化数据,更甚者商 ...

  7. Wonder第一期3D引擎和编辑器线下培训班报名开始啦(免费学习)

    Wonder第一次举办 针对3D底层技术的 线下培训班,免费学习,请大家多多支持-感谢- 培训地点 成都 开课时间 报名满5人开课. 报名方式 加QQ群:732861508 备注请写:报名培训 老师介 ...

  8. 阿里巴巴AI Lab成立两年,都做了些什么?

    https://mp.weixin.qq.com/s/trkCGvpW6aCgnFwLxrGmvQ 撰稿 & 整理|Debra 编辑|Debra 导读:在 2018 云栖人工智能峰会上,阿里巴 ...

  9. 脚本AI与脚本引擎

    Scripted AI and Scripting Engines 脚本AI与脚本引擎 This chapter discusses some of the techniques you can us ...

随机推荐

  1. MFC双缓冲

    大家都知道包括windows桌面在内我们看到的一切都是系统画上去的,windows桌面就相当于一个黑板: <1>普通绘图就是直接在我们看得到的黑板上绘图 <2>双缓冲就是先在一 ...

  2. Angular全局数据管理与同步更新

    自定义实现angular中数据的状态管理,如有不妥请指正 一.先介绍一下rxjs中subject: Import {subject}from’rxjs’ Subject 数据的订阅与分发,结合报刊的发 ...

  3. 63.Python中contains和icontains

    1. contains: 进行大小写敏感的判断,某个字符串是否包含在指定的字段中,这个判断条件使用大小写敏感进行判断,因此在被翻译成"SQL"语句的时候,会使用"like ...

  4. 五、CI框架之通过带路径的view视图路径访问

    一.如果需要现在的某个目录的View界面,需要在controller中写入文件路径 二.访问http://127.0.0.1/CodeIgniter-3.1.10/index.php/显示如下: 不忘 ...

  5. Codeforces_448C 分治

    昨晚CF碰到的题目,昨晚CF跪了啊啊啊 题意比较简单,给定一排挨在一起的板子,宽度都为1,高度不一,一个刷子宽度也是1,可以横着刷,也可以竖着刷,但是任何时刻刷子都要在板子上,也就是说,如果横向的时候 ...

  6. PrepareStatement对象进行批处理的典型步骤顺序

    https://www.yiibai.com/jdbc/preparestatement-batching-example.html 以下是使用PrepareStatement对象进行批处理的典型步骤 ...

  7. c# 循环界面控件

    在 Winform 开发中,窗体(Form)就像一个大容器,可以装各种各样的控件,包括 Panel控件.如果窗体是 Winform 中的最大的容器,那么 Panel控件可以算是老二,它专门用于软件界面 ...

  8. SQL COOKBOOK SQL经典实例代码 笔记第一章代码

    -- SQL COOKBOOK CHAPTER1 -- 查看所有内容 select * from emp; -- 可以单列 select empno,ename,job,sal,mgr,hiredat ...

  9. C语言之结构体概述

    C语言之结构体概述1.结构体类型是一种自定义类型(1)C语言中有2种类型:原生类型和自定义类型.2.结构体使用时先定义结构体类型再用类型定义变量(1)结构体定义时需要先定义结构体类型,再用类型来定义变 ...

  10. Unity获取游戏对象详解

    我觉得Unity里面的Transform 和 GameObject就像两个双胞胎兄弟一样,这俩哥们很要好,我能直接找到你,你也能直接找到我.我看很多人喜欢在类里面去保存GameObject对象.解决G ...