题意

刚开始你有一个数字 \(0\),每一秒钟你会随机选择一个 \([0,2^n-1]\) 的数字,与你手上的数字进行或操作。选择数字 \(i\) 的概率是 \(p[i]\) 。 问期望多少秒后,你手上的数字变成 \(2^n-1\)。\(n \leq 20\) 。

Solution

$ \text{min-max}$ 容斥。

答案即求 \(E(\max(S))\) 即全集 \(S\) 最后一个元素出现时间的期望。

根据 $ \text{min-max}$ 容斥 :

\[E(\max(S))=\sum_{T\subseteq S} ( -1)^{T+1} E(\min(T))
\]

(注:下文中 \(S,T\) 并非上文中的 \(S,T\) )

考虑求 \(E(\min(S))\) 即集合 \(S\) 第一个元素出现时间的期望。

\[E(\min(S)) = \frac{1}{\sum_{T\cap S \neq \emptyset}P_T}
\]

考虑补集转化,设 \(S'\) 为 \(S\) 的补集。

\[E(\min(S)) = \frac{1}{1-\sum_{T\subseteq S'}P_T}
\]

直接高维前缀和即可。复杂度 \(O(2^n \cdot n)\) 。

code

#include<bits/stdc++.h>
const int N=(1<<20)+5;
double p[N],ans;
int main()
{
int n; scanf("%d",&n);
for(int i=0;i<(1<<n);++i)
{
scanf("%lf",&p[i]);
if(fabs(p[i])<1e-7)
{
puts("INF");
return 0;
}
}
for(int i=0;i<n;++i)
for(int j=0;j<(1<<n);++j)
if(j&(1<<i)) p[j]+=p[j^(1<<i)];
for(int i=1;i<(1<<n);++i)
{
double tmp=1.0/(1.0-p[i^((1<<n)-1)]);
__builtin_popcount(i)&1?ans+=tmp:ans-=tmp;
}
printf("%.7lf",ans);
}

【LOJ2127】「HAOI2015」按位或的更多相关文章

  1. 「HAOI2015」按位或

    「HAOI2015」按位或 解题思路 : 这类期望题一眼 \(\text{Min-Max}\) 容斥,只需要稍微推一下如何求 \(E(minS)\) 即可. \[ E(minS) = \frac{1} ...

  2. LOJ#2127「HAOI2015」按位或

    用$ Min-Max$容斥之后要推的东西少了好多 无耻的用实数快读抢了BZOJ.Luogu.LOJ三个$ OJ$的Rank 1 即将update:被STO TXC OTZ超了QAQ 题意:集合$ [0 ...

  3. 【LOJ】#2127. 「HAOI2015」按位或

    题解 听说这是一道论文题orz \(\sum_{k = 1}^{\infty} k(p^{k} - p^{k - 1})\) 答案是这个多项式的第\(2^N - 1\)项的系数 我们反演一下,卷积变点 ...

  4. loj#2128. 「HAOI2015」数字串拆分 矩阵乘法

    目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...

  5. 「HAOI2015」「LuoguP3178」树上操作(树链剖分

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增 ...

  6. 【LOJ】#2128. 「HAOI2015」数字串拆分

    题解 题中给的函数可以用矩阵快速幂递推 我们记一个数组dp[i](这个数组每个元素是一个矩阵)表示从1到i所有的数字经过拆分矩阵递推的加和 转移方法是 \(dp[i] = \sum_{j = 0}^{ ...

  7. 【LOJ】#2126. 「HAOI2015」数组游戏

    题解 简单分析一下就知道\(\lfloor \frac{N}{i} \rfloor\)相同的\(i\)的\(sg\)函数相同 所以我们只要算\(\sqrt{n}\)个\(sg\)函数就好 算每一个\( ...

  8. 「HAOI2015」树上操作(非树剖)

    题目链接(luogu) 看到标签::树链剖分,蒟蒻Sy开始发抖,不知所措,但其实,本题只需要一个恶心普通的操作就可以了!! 前提知识:欧拉序 首先我们知道dfs序,就是在dfs过程中,按访问顺序进行编 ...

  9. 「译」JUnit 5 系列:条件测试

    原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...

随机推荐

  1. kaggle赛题Digit Recognizer:利用TensorFlow搭建神经网络(附上K邻近算法模型预测)

    一.前言 kaggle上有传统的手写数字识别mnist的赛题,通过分类算法,将图片数据进行识别.mnist数据集里面,包含了42000张手写数字0到9的图片,每张图片为28*28=784的像素,所以整 ...

  2. 【JavaWeb】JSP常用内置对象

    session //a页面 <% request.getSession().setAttribute("key","session");%> < ...

  3. 关于Java大整数是否是素数

    题目描述 请编写程序,从键盘输入两个整数m,n,找出等于或大于m的前n个素数. 输入格式: 第一个整数为m,第二个整数为n:中间使用空格隔开.例如: 103 3 输出格式: 从小到大输出找到的等于或大 ...

  4. problem :无法显示activemq的管理界面

    点击 Manage ActiveMQ broker 无法显示admin界面 解决方法:修改activemq.xml 和 jetty.xml文件 把所有0.0.0.0修改为127.0.0.1 成功: 账 ...

  5. 5-create-react-app整合antDesign功能

    使用ant-design: 首先创建react项目: create-react-app app cd app 其次 AntDesign的高级配置:按需导入组件,自定义主题 1.下载依赖(利用yarn, ...

  6. Gof 设计模式

    设计模式的用途(参考) 设计模式代表了最佳实践,通常被有经验的面向对象的软件开发人员采用.设计模式是软件开发人员在软件开发过程中面临一般问题的解决方案.这些解决方案是众多软件开发人员在相当长的时间的实 ...

  7. 3_04_MSSQL课程_Ado.Net_.ExcuteReader()(SQLDataReader)

    ExcuteNonQuery(); 返回影响的行数 ExcuteSacalar();返回第一行第一列 ExcuteReader(): Reader,指针,指向表的表头.只是指向,数据仍在数据库中. S ...

  8. 一个Android音频文本同步的英文有声读物App的开发过程

    转发: http://segmentfault.com/a/1190000003498111 “新概念英语”.“可可英语”.“亚马逊的audible有声书”.“扇贝听力”是我目前所知道的实现英文语音和 ...

  9. SystemVerilog for design 笔记(二)

    转载请标明出处 1. System Verilog文本值和数据类型 1.1. 增强的文本值赋值 相对于verilog,SV在文本值赋值时可以1.无需指定进制    2.赋值可以是逻辑1 用法: reg ...

  10. A easy and simple way to establish Oracle ADG

    Yes, thanks to Then, I can give simple and reasy way to make it. Suppose hosts and IPs like that: 15 ...