设第一套为A,第二套为B

先对于每个B[i]判断他能否替代A[j],即B[i]与其他的A线性无关

设$B[i]=\sum\limits_{k}{c[k]*A[k]}$,那么只要看c[j]是否等于零即可,如果c[j]=0,就意味着可以用A[j]以外的线性表达出B[i],所以不能B[i]替换A[j],否则可以

于是高斯消元求出c矩阵,问题就转化成了求二分图的最小字典序匹配

先跑一遍匈牙利判下是否无解,然后以它为基准解再贪心地求一遍答案

具体地说,你做到第i个的时候,前i-1都要固定住,其他的和普通匈牙利是一样的

 #include<bits/stdc++.h>
#include<tr1/unordered_map>
#define CLR(a,x) memset(a,x,sizeof(a))
#define MP make_pair
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pa;
typedef long double ld;
const int maxn=,P=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int N;
int a[maxn][maxn*],b[maxn][maxn],c[maxn][maxn];
bool can[maxn][maxn]; inline int fpow(int x,int y){
int re=;
while(y){
if(y&) re=1ll*x*re%P;
x=1ll*x*x%P,y>>=;
}return re;
} inline void getinv(){
for(int i=;i<=N;i++){
a[i][i+N]=;
}
for(int i=;i<=N;i++){
int mi=i;
for(int j=i+;j<=N;j++) if(a[j][i]) mi=j;
swap(a[mi],a[i]);
int iv=fpow(a[i][i],P-);
for(int j=N*;j>=i;j--) a[i][j]=1ll*a[i][j]*iv%P;
for(int j=i+;j<=N;j++){
for(int k=N*;k>=i;k--) a[j][k]=(a[j][k]-1ll*a[i][k]*a[j][i])%P;
}
}
for(int i=N;i;i--){
for(int j=i-;j;j--){
for(int k=N+;k<=N*;k++) a[j][k]=(a[j][k]-1ll*a[j][i]*a[i][k])%P;
}
}
for(int i=;i<=N;i++){
for(int j=;j<=N;j++) a[i][j]=a[i][j+N];
}
} int bel[maxn],to[maxn];bool flag[maxn]; bool dfs(int x){
for(int i=;i<=N;i++){
if(!can[x][i]||flag[i]) continue;
flag[i]=;
if(!bel[i]||dfs(bel[i])){bel[i]=x,to[x]=i;return ;}
}return ;
}
bool dfs2(int x,int y){
for(int i=;i<=N;i++){
if(!can[x][i]||flag[i]) continue;
flag[i]=;
if(bel[i]==y||(bel[i]>y&&dfs2(bel[i],y))){to[x]=i,bel[i]=x;return ;}
}return ;
} int main(){
//freopen("","r",stdin);
N=rd();
for(int i=;i<=N;i++){
for(int j=;j<=N;j++) a[i][j]=rd();
}
for(int i=;i<=N;i++){
for(int j=;j<=N;j++) b[i][j]=rd();
}
getinv();
for(int i=;i<=N;i++){
for(int j=;j<=N;j++){
for(int k=;k<=N;k++){
c[i][j]=(c[i][j]+1ll*b[i][k]*a[k][j])%P;
}
}
}
for(int i=;i<=N;i++){
for(int j=;j<=N;j++){
if(c[i][j]) can[j][i]=;
}
}/*
for(int i=rd();i;i--){
int a=rd(),b=rd();
can[a][b]=1;
}*/
bool bl=;
for(int i=;i<=N;i++){
CLR(flag,);
if(!dfs(i)){bl=;break;}
}
if(!bl) printf("NIE\n");
else{
printf("TAK\n");
for(int i=;i<=N;i++){
CLR(flag,);
dfs2(i,i);
}
for(int i=;i<=N;i++){
printf("%d\n",to[i]);
}
}
return ;
}

bzoj3168 钙铁锌硒维生素 (矩阵求逆+二分图最小字典序匹配)的更多相关文章

  1. [模板] 匈牙利算法&&二分图最小字典序匹配

    匈牙利算法 简介 匈牙利算法是一种求二分图最大匹配的算法. 时间复杂度: 邻接表/前向星: \(O(n * m)\), 邻接矩阵: \(O(n^3)\). 空间复杂度: 邻接表/前向星: \(O(n ...

  2. HDU 1533:Going Home(KM算法求二分图最小权匹配)

    http://acm.hdu.edu.cn/showproblem.php?pid=1533 Going Home Problem Description   On a grid map there ...

  3. BZOJ 3168 Luogu P4100 [HEOI2013]钙铁锌硒维生素 (矩阵求逆、二分图匹配)

    线性代数+图论好题. 题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3168 (luogu) https://www.lu ...

  4. BZOJ 3168 Heoi2013 钙铁锌硒维生素 矩阵求逆+匈牙利算法

    题目大意:给定一个n∗n的满秩矩阵A和一个n∗n的矩阵B.求一个字典序最小的1...n的排列a满足将随意一个Ai换成Bai后矩阵A仍然满秩 我们考虑建立一个二分图.假设Ai能换成Bj.就在i−> ...

  5. HDU 1533 二分图最小权匹配 Going Home

    带权二分图匹配,把距离当做权值,因为是最小匹配,所以把距离的相反数当做权值求最大匹配. 最后再把答案取一下反即可. #include <iostream> #include <cst ...

  6. [ACM] POJ 3686 The Windy&#39;s (二分图最小权匹配,KM算法,特殊建图)

    The Windy's Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4158   Accepted: 1777 Descr ...

  7. [ACM] HDU 1533 Going Home (二分图最小权匹配,KM算法)

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  8. P4100-[HEOI2013]钙铁锌硒维生素【矩阵求逆,最大匹配】

    正题 题目链接:https://www.luogu.com.cn/problem/P4100 题目大意 给出\(n\)个线性无关的向量\(A_i\),然后给出\(n\)个向量\(B_i\),求一个字典 ...

  9. BZOJ3168. [HEOI2013]钙铁锌硒维生素(线性代数+二分图匹配)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3168 题解 首先,我们需要求出对于任意的 \(i, j(1 \leq i, j \leq ...

随机推荐

  1. asp.net easyui 动态绑定下拉框

    前台: <title>标题</title> <link href="EasyUi_v1.3.4/easyui/themes/default/easyui.css ...

  2. 一文搞定MySQL的事务和隔离级别

    一.事务简介 事务是数据库管理系统执行过程中的一个逻辑单位,由一个有限的数据库操作序列构成. 一个数据库事务通常包含了一个序列的对数据库的读/写操作.它的存在包含有以下两个目的: 为数据库操作序列提供 ...

  3. oracle学习笔记(三) DCL 数据控制语言与 DDL 数据定义语言

    DCL 数据控制语言 Data control language 之前说过的授权和收权利语句 grant, revoke DDL 数据定义语言 Data define language create ...

  4. es6 for of 循环

    es6 新增了 for of 循环,只要继承了Iterator 接口的数据集合都可以使用 for of 去循环 for of 循环,统一数据集合的循环方法,解决了forEach循环的不能使用break ...

  5. Vue slot插槽

    插槽用于内容分发,存在于子组件之中. 插槽作用域 父级组件作用域为父级,子级组件作用域为子级,在哪定义的作用域就在哪. 子组件之间的内容是在父级作用域的,无法直接访问子组件里面的数据. 插槽元素 &l ...

  6. SQL Server服务没有自动启动原因案例分析

    这个案例是前两天出现的,一直没有时间总结,25号凌晨4点去处理数据库的故障问题.远程连上公司的局域网,psping检查发现服务器的1433端口不通,数据库连接不上,但是主机又能ping通,登录服务器检 ...

  7. Windows Server 2008 R2 Enterprise x64 部署 nginx、tomcat、mysql

    部署nginx nginx主要做反向代理用,可以单独部署到其它机器上,这里nginx和tomcat部署在同一台机器上. 下载nginx-1.14.1.zip,并解压到目标目录,打开cmd进入到解压后的 ...

  8. Loj #2331. 「清华集训 2017」某位歌姬的故事

    Loj #2331. 「清华集训 2017」某位歌姬的故事 IA 是一名会唱歌的女孩子. IOI2018 就要来了,IA 决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符, ...

  9. jcrop2.X 取消选框

    (原) 官网 0.9.12 API 2.X API 在2.X以下在版本中,api提供了release()方法用于取消选框.但在2.X以上的版本中已经没有这个方法了.于是各种查找,终于解决了如何取消选框 ...

  10. 数据的偏度和峰度——df.skew()、df.kurt()

    我们一般会拿偏度和峰度来看数据的分布形态,而且一般会跟正态分布做比较,我们把正态分布的偏度和峰度都看做零.如果我们在实操中,算到偏度峰度不为0,即表明变量存在左偏右偏,或者是高顶平顶这么一说. 一.偏 ...