bzoj 2564 集合的面积
Description
对于两个点集A和B,定义集合的和为:
A+B={(xiA+xjB,yiA+yjB ):(xiA,yiA )∈A,(xjB,yjB )∈B}
现在给定一个N个点的集合A和一个M个点的集合B,求2F(A+B)。
Input
第一行包含用空格隔开的两个整数,分别为N和M;
第二行包含N个不同的数对,表示A集合中的N个点的坐标;
第三行包含M个不同的数对,表示B集合中的M个点的坐标。
Output
一共输出一行一个整数,2F(A+B)。
Sample Input
0 0 2 1 0 1 2 0
0 0 1 0 0 2 1 2 0 1
Sample Output
18
数据规模和约定
对于30%的数据满足N ≤ 200,M ≤ 200;
对于100%的数据满足N ≤ 10^5,M ≤ 10^5,|xi|, |yi| ≤ 10^8。
分别求出两个点集的凸包,然后贪心地加点就行。
A和B凸包第一个点肯定在答案里
然后贪心,如果A到了i,B到了j
显然如果A[i+1]+B[j]比A[i]+B[j+1]更凸,也就是在右边,那么就i+1,否则j+1
这样构造出的新凸包即为答案
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lol;
struct point
{
lol x,y;
}p[],s[][],sta[];
int n,m,C,top;
lol ans;
lol cross(point a,point b)
{
return a.x*b.y-a.y*b.x;
}
point operator -(point a,point b)
{
return (point){a.x-b.x,a.y-b.y};
}
point operator +(point a,point b)
{
return (point){a.x+b.x,a.y+b.y};
}
bool cmp(point a,point b)
{
return (a.y<b.y)||(a.y==b.y&&a.x<b.x);
}
lol dist(point a)
{
return a.x*a.x+a.y*a.y;
}
bool cmp2(point a,point b)
{
lol t=cross((p[]-a),(p[]-b));
if (t==) return dist(p[]-a)<dist(p[]-b);
return t>;
}
int graham(int N,int c)
{int i;
int C=c;
sort(p+,p+N+,cmp);
sort(p+,p+N+,cmp2);
top=;
s[c][++top]=p[];s[c][++top]=p[];
for (i=;i<=N;i++)
{
while (top>&&cross(p[i]-s[c][top-],s[c][top]-s[c][top-])>=) top--;
++top;
s[c][top]=p[i];
}
return top;
}
int main()
{int i,j;
cin>>n>>m;
for (i=;i<=n;i++)
{
scanf("%lld%lld",&p[i].x,&p[i].y);
}
n=graham(n,);
for (i=;i<=m;i++)
{
scanf("%lld%lld",&p[i].x,&p[i].y);
}
m=graham(m,);
sta[top=]=s[][]+s[][];
for (i=,j=;i<=n||j<=m;)
{
point x=s[][(i-)%n+]+s[][j%m+],y=s[][i%n+]+s[][(j-)%m+];
if (cross(x-sta[top],y-sta[top])>=)
sta[++top]=x,j++;
else sta[++top]=y,i++;
}
for (i=;i<top;i++)
ans+=cross(sta[i]-sta[],sta[i+]-sta[]);
printf("%lld",ans);
}
bzoj 2564 集合的面积的更多相关文章
- BZOJ 2839: 集合计数 解题报告
BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...
- bzoj2564 集合的面积
Description 对于一个平面上点的集合P={(xi,yi )},定义集合P的面积F(P)为点集P的凸包的面积. 对于两个点集A和B,定义集合的和为: A+B={(xiA+xjB,yiA+yjB ...
- bzoj2564集合的面积
题目描述 对于一个平面上点的集合P={(xi,yi )},定义集合P的面积F(P)为点集P的凸包的面积. 对于两个点集A和B,定义集合的和为: A+B={(xiA+xjB,yiA+yjB ):(xiA ...
- bzoj 1845: [Cqoi2005] 三角形面积并 扫描线
1845: [Cqoi2005] 三角形面积并 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 848 Solved: 206[Submit][Statu ...
- [BZOJ 2178] 圆的面积并 【Simpson积分】
题目链接:BZOJ - 2178 题目分析 用Simpson积分,将圆按照 x 坐标分成连续的一些段,分别用 Simpson 求. 注意:1)Eps要设成 1e-13 2)要去掉被其他圆包含的圆. ...
- BZOJ 2839: 集合计数 [容斥原理 组合]
2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...
- BZOJ 1845: [Cqoi2005] 三角形面积并 [计算几何 扫描线]
1845: [Cqoi2005] 三角形面积并 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 1151 Solved: 313[Submit][Stat ...
- BZOJ 2178: 圆的面积并 [辛普森积分 区间并]
2178: 圆的面积并 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 1740 Solved: 450[Submit][Status][Discus ...
- ●BZOJ 2839 集合计数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎 ...
随机推荐
- Alpha冲刺博客集
传送门 冲刺随笔 Alpha冲刺day1 (10.31):第一天博客地址 Alpha冲刺day2 (11.01):第二天博客地址 Alpha冲刺day3 (11.02):第三天博客地址 Alpha冲刺 ...
- Git使用方法2.0
## Git来源: 最早开始是由Ruby程序员们发起的.Ruby是日本的家伙搞出来的,日本有个代码托管网站叫heroku,当时用这个的人比较多,现在这个网站还能打开,网址是www.heroku.com ...
- C语言博客作业--字符数组-陈张鑫
一.PTA实验作业(4分) 题目1:7-5 查验身份证 1. 本题PTA提交列表(要提交列表,不是结果) 2. 设计思路(伪代码或流程图) 定义变量身份证个数n,合法个数count=0,flag=0, ...
- Archlinux安装和使用技巧
一 准备工作 1 文件下载及启动盘制作 文件可以在https://mirrors.ustc.edu.cn/,这是个中科大的镜像网,选择如下: 下载完成后,就是制作一个启动盘,我使用的是Linux下强 ...
- scrapy 模拟登陆
import scrapy import urllib.request from scrapy.http import Request,FormRequest class LoginspdSpider ...
- 过滤器Filter与监听器Listener
过滤器Filter 过滤器也是一种servlet 它也可以对用户的请求进行处理 , 但是他所做的处理,只是一些轻量级的处理.Fileter就好像jsp页面与servlet之间的一道关卡,如果这个 ...
- 14-TypeScript简单工厂模式
在TypeScript中,要调用功能,通常在调用方通过实例化被调用方对象来调用相关方法,但这种实现在调用方和被调用方形成了强耦合的关系. 另外如果被调用方有种实现,在调用方需要根据场景去实例化不同的类 ...
- Web Api 使用模型验证
public class Person { public int Id { get; set; } [Required(ErrorMessage = "姓名不能为空啊啊啊!")] ...
- SpringBoot应用的启动方式
一:IDE 运行Application这个类的main方法 二:在SpringBoot的应用的根目录下运行mvn spring-boot:run 三:使用mvn install 生成jar后运行 先到 ...
- Docker学习笔记 - Docker容器的网络基础
一.虚拟网桥 docker0 docker0 是 linux的虚拟网桥,守护进程通过docker0给容器提供网络连接的各种服务. 网桥是数据链路层设备,通常ip地址是网络层的设置.linux的虚拟网桥 ...