题目描述

对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m。

例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6;而且是最小的有4个因子的整数。

输入输出格式

输入格式:

n(1≤n≤50000)

输出格式:

m

输入输出样例

输入样例#1:

INT.IN
4
输出样例#1:

INT.OUT
6
题解:

这道题和[HAOI 2007]反素数ant解题思路和方法简直一毛一样...

同样我们引入这个公式:

对任一整数a>1,有a=p1a1p2a2…pnan,其中p1<p2<…<pn均为素数,而a1,a2…,an是正整数。

a的正约数个数为:(1+a1)(1+a2)…(1+an)

同理,我们也是求有n个因数的最小整数。

我们最坏的情况所有质数只取1个,由于15<log250000<16

由于数字过大,这里用指数形式保存,用于比较大小

同时注意每层循环枚举取质数的个数时候,因为不合法的情况很多,可以只枚举√n次,然后用枚举的值算出对应的另外一个值。

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int len,p[],prime[],n,ans[];
double lg[],maxx=2e9;
void print(int x)
{int i,j,k;
long long s[],Mod=1e4;
memset(s,,sizeof(s));
s[]=;len=;
for (i=;i<=x;i++)
{
for (j=;j<=ans[i];j++)
{
for (k=;k<=len;k++)
{
s[k]=s[k]*prime[i];
}
for (k=;k<=len;k++)
s[k+]+=s[k]/Mod,s[k]%=Mod;
while (s[len+]) len++;
}
}
for (i=len;i>=;i--)
if (i!=len)
printf("%04d",s[i]);
else printf("%d",s[i]);
}
void dfs(double s,int x,int k)
{int i;
if (s>=maxx) return;
if (k==)
{
maxx=s;
memcpy(ans,p,sizeof(ans));
return;
}
if (x>) return;
//cout<<p[x-1]<<endl;
for (i=;(i+)*(i+)<=k;i++)
if (k%(i+)==)
{
if (i!=)
{
p[x]=i;
dfs(s+i*lg[x],x+,k/(i+));
p[x]=;
}
if ((i+)*(i+)!=k)
{
p[x]=k/(i+)-;
dfs(s+p[x]*lg[x],x+,i+);
p[x]=;
}
}
}
int main()
{int i;
cin>>n;
prime[]=;prime[]=;prime[]=;prime[]=;prime[]=;
prime[]=;prime[]=;prime[]=;prime[]=;
prime[]=;prime[]=;prime[]=;prime[]=;
prime[]=;prime[]=;prime[]=;
for (i=;i<=;i++)
lg[i]=(double)log(prime[i]);
dfs(,,n);
//for (i=1;i<=16;i++)
//cout<<ans[i]<<endl;
print();
}

[HNOI2001]求正整数的更多相关文章

  1. 高精度+搜索+质数 BZOJ1225 [HNOI2001] 求正整数

    // 高精度+搜索+质数 BZOJ1225 [HNOI2001] 求正整数 // 思路: // http://blog.csdn.net/huzecong/article/details/847868 ...

  2. BZOJ 1225: [HNOI2001] 求正整数( dfs + 高精度 )

    15 < log250000 < 16, 所以不会选超过16个质数, 然后暴力去跑dfs, 高精度计算最后答案.. ------------------------------------ ...

  3. bzoj1225 [HNOI2001] 求正整数

    1225: [HNOI2001] 求正整数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 762  Solved: 313[Submit][Statu ...

  4. luogu P1128 [HNOI2001]求正整数 dp 高精度

    LINK:求正整数 比较难的高精度. 容易想到贪心不过这个贪心的策略大多都能找到反例. 考虑dp. f[i][j]表示前i个质数此时n的值为j的最小的答案. 利用高精度dp不太现实.就算上FFT也会T ...

  5. 【BZOJ】1225: [HNOI2001] 求正整数

    http://www.lydsy.com/JudgeOnline/problem.php?id=1225 题意:给一个数n,求一个最小的有n个约数的正整数.(n<=50000) #include ...

  6. BZOJ 1225: [HNOI2001] 求正整数 高精度+搜索+质数

    题意:给定n求,有n个因子的最小正整数. 题解:水题,zcr都会,我就不说什么了. 因数个数球求法应该知道,将m分解质因数,然后发现 a1^p1*a2^p2....an^pn这样一个式子, (1+p1 ...

  7. [HNOI2001] 求正整数 - 背包dp,数论

    对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. Solution (乍一看很简单却搞了好久?我真是太菜了) 根据因子个数计算公式 若 \(m = \prod p_i^{q_i}\) ...

  8. P1128 [HNOI2001]求正整数

    传送门 rqy是我们的红太阳没有它我们就会死 可以考虑dp,设\(dp[i][j]\)表示只包含前\(j\)个质数的数中,因子个数为\(i\)的数的最小值是多少,那么有转移方程 \[f[i][j]=m ...

  9. 求正整数n所有可能的和式的组合(如;4=1+1+1+1、1+1+2、1+3、2+1+1、2+2

    作者:张小二 nyoj90 ,可以使用递归的方式直接计算个数,也可以通过把满足的个数求出来计数,因为在juLy博客上看到整数划分,所以重写了这个代码,就是列出所m的可能性,提交后正确.acmer的入门 ...

随机推荐

  1. oracle数据库修改连接数

    最近在用weblogic部署项目,同时用的是oracle数据库,然后今天遇到一个问题:多个用户连接数据库连接不成功,有时提示被锁住,经检查发现一方面weblogic控制台中数据源的连接池配置没有配置足 ...

  2. 冲刺NO.5

    Alpha冲刺第五天 站立式会议 项目进展 今日项目完成内容主要包括了JS的学习,事务管理员模块与学生模块的完善与补充,并且开始编写信用信息管理模块和奖惩事务管理模块. 问题困难 前端部分的技术掌握的 ...

  3. 用greenlet实现Python中的并发

    from greenlet import greenlet def test1(): print 12 gr2.switch() print 34 def test2(): print 56 gr1. ...

  4. ResNet

     上图为单个模型 VGGNet, GoogleNet 都说明了深度对于神经网络的重要性. 文中在开始提出: 堆叠越多的层, 网络真的能学习的越好吗? 然后通过神经网络到达足够深度后出现的退化(deg ...

  5. JAVA_SE基础——58.如何用jar命令对java工程进行打包

    有时候为了更方便快捷的部署和执行Java程序,要把java应用程序打包成一个jar包.而这个基础的操作有时候也很麻烦,为了方便java程序员们能够方便的打包java应用程序,下面对jar命令进行介绍, ...

  6. python3.6执行pip3时 Unable to create process using '"'

    问题需求 由于在windows操作系统中已经安装了python2.7,要在安装python3的时候 将python3.6安装在C:\Python36目录下 然后进入C:\Python36目录下执行pi ...

  7. @Select注解的情况下,重载的报错

    在编写代码的时候,我对查询这个方法进行了重载,这样调用的时候会根据参数的不同,进而去执行不同的操作,但是......问题来了.想法都是美好的,实际情况却不是我理想的状态.运行代码的时候他动了几下,然后 ...

  8. python的切片操作

    切片操作符是序列名后跟一个方括号,方括号中有一对可选的数字,并用冒号分割.注意这与你使用的索引操作符十分相似.记住数是可选的,而冒号是必须的. 切片操作符中的第一个数(冒号之前)表示切片开始的位置,第 ...

  9. 关于web XSS注入问题

    对web安全方面的知识非常薄弱,这篇文章把Xss跨站攻击和sql注入的相关知识整理了下,附带公司写的一个filer. 对于防止sql注入发生,我只用过简单拼接字符串的注入及参数化查询,可以说没什么好经 ...

  10. iOS10 越狱, openSSH

    iOS 10 已经可以越狱, 不过比较蛋疼的是非完美越狱,每次重启都要从新越狱. 感兴趣的同学可以尝试一下,本人使用同步推上的教程,亲测可用. 越狱完后想安装OpenSSH, 在Cydia上搜索安装, ...