●BZOJ 2820 YY的GCD
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=2820
题解:
莫比乌斯反演
先看看这个题:HDU 1695 GCD(本题简化版)
HDU 1695 GCD:求满足x∈(1~n)和y∈(1~m),且gcd(x,y)=k的(x,y)的对数。
而这个k是给定的。
可以由莫比乌斯反演得到:(详见●HDU 1695 GCD)
$ANS=\sum_{d=1}^{n}\mu(d)\times\lfloor\frac{n}{d}\rfloor\times\lfloor\frac{m}{d}\rfloor$
但是本题的k是所有的质数,额...
我们可以先枚举一个质数p,然后仿照上面的做法,可以得到:
$ANS=\sum_p \sum_{d=1}^{n}\mu(d)\times\lfloor\frac{n/p}{d}\rfloor\times\lfloor\frac{m/p}{d}\rfloor$
这个复杂度还无法满足本题的数据。
然后把上面的求和式做如下化简:
令$T=pd$,
那么:$ANS=\sum_{T=1}^{n}{(}{\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor} \sum_{p|T}\mu(\frac{T}{p}){)}$
如果可以预处理出$\sum_{p|T}\mu(\frac{T}{p})$的值,
那么上式就可以$O(n)$求出,
如果运用向下取整的特性进行分块计算,就可以达到$O(\sqrt{n})$的复杂度。
至于$\sum_{p|T}\mu(\frac{T}{p})$,有两种求法:
设$sum[T]=\sum_{p|T}\mu(\frac{T}{p})$
1.枚举每个质数p,然后把他的倍数$T=\lambda p的sum[T]+=\mu(\frac{T}{p})$
2.运用$\mu$是积性函数的性质,可以在线型筛时求出。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 10000050
using namespace std;
long long ANS;
int musum[MAXN],mu[MAXN];
void Prime_Sieve(){
static bool np[MAXN],dp[MAXN]; mu[1]=1;
static int prime[MAXN],pnt;
for(int i=2;i<=10000000;i++){
if(!np[i]) prime[++pnt]=i,dp[i]=1,mu[i]=-1,musum[i]=1;
for(int j=1;j<=pnt&&i<=10000000/prime[j];j++){
np[i*prime[j]]=1; dp[i*prime[j]]=dp[i]&&i%prime[j];
mu[i*prime[j]]=i%prime[j]?-mu[i]:0;
if(i%prime[j]==0) musum[i*prime[j]]=dp[i]?mu[i]:0;
else musum[i*prime[j]]=musum[i]*mu[prime[j]]+mu[i];
if(i%prime[j]==0) break;
}
}
for(int i=1;i<=10000000;i++) musum[i]+=musum[i-1];
}
int main(){
int n,m,Case,mini;
Prime_Sieve(); scanf("%d",&Case);
//while(scanf("%d",&n)) printf("%d\n",musum[n]);
while(Case--){
scanf("%d%d",&n,&m); mini=min(n,m); ANS=0;
for(int i=1,last;i<=mini;i=last+1){
last=min(n/(n/i),m/(m/i));
ANS+=1ll*(musum[last]-musum[i-1])*(n/i)*(m/i);
}
printf("%lld\n",ANS);
}
return 0;
}
●BZOJ 2820 YY的GCD的更多相关文章
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- 【刷题】BZOJ 2820 YY的GCD
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然 ...
- Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- BZOJ 2820 YY的GCD(莫比乌斯函数)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2820 题意:给定n,m.求1<=x<=n, 1<=y<=m且Gc ...
- bzoj 2820 YY的GCD(莫比乌斯反演)
Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 kAc这种傻× ...
随机推荐
- 事后诸葛亮——城市安全风险管理项目Postmortem结果
设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 本系统希望实现快速识别危害因素,使工作人员对风险作出准确的评估.即让使用者熟悉潜在的危险因素,知道 ...
- scrapy csvfeed spider
class CsvspiderSpider(CSVFeedSpider): name = 'csvspider' allowed_domains = ['iqianyue.com'] start_ur ...
- 限定 edittext 的 输入内容
<EditText android:id="@+id/idNumber" style="@style ...
- Digilent Xilinx USB Jtag cable
Digilent Xilinx USB Jtag cable 安装环境 操作系统:fedora 20 64bit 源链接:https://wiki.gentoo.org/wiki/Xilinx_USB ...
- jav音频格式转换 ffmpeg 微信录音amr转mp3
项目背景: 之前公司开发了一个微信公众号,要求把js-sdk录音文件在web网页也能播放.众所周知,html的<audio>标签ogg,mp3,wav,也有所说苹果safari支持m4a格 ...
- 《高级软件测试》Linux平台Jira的安装与配置
现在大部分的程序开发都是在linux下进行的,jira更多的时候是安装在linux上,那么,如何在linux下安装配置jira呢?本文将以Ubuntu 17.10和jira7.5.2为例,对linux ...
- bzoj千题计划243:bzoj2325: [ZJOI2011]道馆之战
http://www.lydsy.com/JudgeOnline/problem.php?id=2325 设线段树节点区间为[l,r] 每个节点维护sum[0/1][0/1] 从l的A/B区域到r的 ...
- maven常见问题处理(3-2)maven打包时跳过测试的几个方法
运行mvn install时跳过Test方法一:<project> [...] <build> <plugins> <plugin> <group ...
- NHibernate与IbatisNet的简单比较
NHibernate是当前最流行的Java O/R mapping框架Hibernate的移植版本,当前版本是1.0 rc-1.它出身于sf.net..IbatisNet是另外一种优秀的Java O/ ...
- LSTM主要思想和网络结构
在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义.我们不会将所有的东西都全部丢弃,然后用空白的大脑进行思考.我们的思想拥有持久性. 相关信息和当前预测位置之间的间 ...