传送门

题意:

有一棵n个点的无根树,节点依次编号为1到n,其中节点i的权值为vi,
定义一棵树的价值为它所有点的权值的异或和。
现在对于每个[0,m)的整数k,请统计有多少T的非空连通子树的价值等于k。

Sample Input
2
4 4
2 0 1 3
1 2
1 3
1 4
4 4
0 1 3 1
1 2
1 3
1 4
Sample Output
3 3 2 3
2 4 2 3
令f[i][j]表示以i为根的子树中异或和为j的联通块个数,v为i儿子
f[i][j]+=f[i][k]*f[v][l]    (k^l==j)
发现转移其实可以写成这种形式:
$C_i=\sum_{j^k=i}A_j*B_k$
这和卷积有点类似,不过运算改成了异或
这里就要用到FWT(快速沃尔什变换)
就可以做到nlogn转移
转移完后记得在加上原来的f[i][j],因为你可以不选v
复杂度为$O(n^{2}logn)$
卡常,少取模,不要定义long long变量
这题还可以点分治
 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
struct Node
{
int next,to;
}edge[];
int num,head[],Mod=1e9+,inv2,tmp[],a[][],ans[],n,m;
int gi()
{
char ch=getchar();
int x=;
while (ch<''||ch>'') ch=getchar();
while (ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x;
}
void add(int u,int v)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
}
int qpow(int x,int y)
{
int res=;
while (y)
{
if (y&) res=1ll*res*x%Mod;
x=1ll*x*x%Mod;
y/=;
}
return res;
}
void FWT(int *A,int len)
{int i,j,k;
for (i=;i<m;i<<=)
{
for (j=;j<m;j+=(i<<))
{
for (k=;k<i;k++)
{
int x=A[j+k],y=A[j+k+i];
A[j+k]=x+y;
if (A[j+k]>=Mod) A[j+k]-=Mod;
A[j+k+i]=x-y+Mod;
if (A[j+k+i]>=Mod) A[j+k+i]-=Mod;
}
}
}
}
void UFWT(int *A,int len)
{int i,j,k;
for (i=;i<m;i<<=)
{
for (j=;j<m;j+=(i<<))
{
for (k=;k<i;k++)
{
int x=A[j+k],y=A[j+k+i];
A[j+k]=1ll*(x+y)*inv2%Mod;
A[j+k+i]=1ll*(x-y+Mod)*inv2%Mod;
}
}
}
}
void DP(int x,int y)
{int i;
for (i=;i<m;i++)
tmp[i]=a[x][i];
FWT(a[x],m);
FWT(a[y],m);
for (i=;i<m;i++)
a[x][i]=1ll*a[x][i]*a[y][i]%Mod;
UFWT(a[x],m);
for (i=;i<m;i++)
{
a[x][i]=a[x][i]+tmp[i];
if (a[x][i]>=Mod) a[x][i]-=Mod;
}
}
void dfs(int x,int pa)
{int i;
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (v!=pa)
{
dfs(v,x);
DP(x,v);
}
}
for (i=;i<m;i++)
{
ans[i]=ans[i]+a[x][i];
if (ans[i]>=Mod) ans[i]-=Mod;
}
}
int main()
{int T,i,x,u,v,j;
cin>>T;
inv2=qpow(,Mod-);
while (T--)
{
memset(head,,sizeof(head));
num=;
memset(a,,sizeof(a));
memset(ans,,sizeof(ans));
scanf("%d%d",&n,&m);
for (i=;i<=n;i++)
{
x=gi();
a[i][x]=;
}
for (i=;i<=n-;i++)
{
u=gi();v=gi();
add(u,v);add(v,u);
}
dfs(,);
for (i=;i<m-;i++)
printf("%d ",ans[i]);
printf("%d\n",ans[m-]);
}
}

HDU 5909 Tree Cutting的更多相关文章

  1. hdu 5909 Tree Cutting [树形DP fwt]

    hdu 5909 Tree Cutting 题意:一颗无根树,每个点有权值,连通子树的权值为异或和,求异或和为[0,m)的方案数 \(f[i][j]\)表示子树i中经过i的连通子树异或和为j的方案数 ...

  2. HDU 5909 Tree Cutting 动态规划 快速沃尔什变换

    Tree Cutting 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5909 Description Byteasar has a tree T ...

  3. hdu 5909 Tree Cutting——点分治(树形DP转为序列DP)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5909 点分治的话,每次要做一次树形DP:但时间应该是 siz*m2 的.可以用 FWT 变成 siz*ml ...

  4. HDU 5909 Tree Cutting(FWT+树形DP)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5909 [题目大意] 给出一棵树,其每棵连通子树的价值为其点权的xor和, 问有多少连通子树的价值为 ...

  5. hdu 5909 Tree Cutting —— 点分治

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5909 点分治,每次的 rt 是必选的点: 考虑必须选根的一个连通块,可以DP,决策就是在每个子树中决定选不 ...

  6. HDU.5909.Tree Cutting(树形DP FWT/点分治)

    题目链接 \(Description\) 给定一棵树,每个点有权值,在\([0,m-1]\)之间.求异或和为\(0,1,...,m-1\)的非空连通块各有多少个. \(n\leq 1000,m\leq ...

  7. HDU - 5909 Tree Cutting (树形dp+FWT优化)

    题意:树上每个节点有权值,定义一棵树的权值为所有节点权值异或的值.求一棵树中,连通子树值为[0,m)的个数. 分析: 设\(dp[i][j]\)为根为i,值为j的子树的个数. 则\(dp[i][j\o ...

  8. 【HDU 5909】 Tree Cutting (树形依赖型DP+点分治)

    Tree Cutting Problem Description Byteasar has a tree T with n vertices conveniently labeled with 1,2 ...

  9. HDU-6881 Tree Cutting (HDU多校D10T5 点分治)

    HDU-6881 Tree Cutting 题意 \(n\) 个点的一棵树,要求删除尽量少的点,使得删点之后还是一棵树,并且直径不超过 \(k\),求删除点的数量 分析 补题之前的一些错误想法: 尝试 ...

随机推荐

  1. SpagoBi开发示例——员工离职人数统计

    1.开发工具:SpagoBIStudio_5.1,操作界面和使用方法和eclipse没差 安装参考:http://www.cnblogs.com/starlet/p/4778334.html   2. ...

  2. Mybash的实现

    Mybash的实现 要求: 使用fork,exec,wait实现mybash 写出伪代码,产品代码和测试代码 发表知识理解,实现过程和问题解决的博客(包含代码托管链接) 背景知识 1. fork 使用 ...

  3. Android开发简易教程

    Android开发简易教程 Android 开发因为涉及到代码编辑.UI 布局.打包等工序,有一款好用的IDE非常重要.Google 最早提供了基于 Eclipse 的 ADT 作为开发工具,后来在2 ...

  4. python的测试

    测试 知识点 单元测试概念 使用 unittest 模块 测试用例的编写 异常测试 测试覆盖率概念 使用 coverage 模块 实验步骤 1. 应该测试什么? 如果可能的话,代码库中的所有代码都要测 ...

  5. 开始 Python 之旅

    开始 Python 之旅 课程来源 本课程基于 Python for you and me 教程翻译制作,其中参考了 Python tutorial 和 The Python Standard Lib ...

  6. var 和 let 的异同?

    相同点 声明后未赋值表现一致 不同点 1.使用未声明的变量表现不同 2.变量作用范围不同 3.var可以声明多次 let只能声明一次 let的好处就是当我们在写代码的时候可以避免在不知道的情况下重复声 ...

  7. 《javascript设计模式与开发实践》阅读笔记(12)—— 享元模式

    享元模式 享元(flyweight)模式是一种用于性能优化的模式,"fly"在这里是苍蝇的意思,意为蝇量级.享元模式的核心是运用共享技术来有效支持大量细粒度的对象. 享元模式的核心 ...

  8. 【微软大法好】VS Tools for AI全攻略(2)

    接着上文,我们来讨论如何使用Azure资源来训练我们的tensorflow项目.Azure云我个人用得很多,主要是因为微软爸爸批了150刀每月的额度,我可以愉快地玩耍. 那么针对Azure,有成套的两 ...

  9. js判断操作系统windows,ios,android(笔记)

    使用JS判断用户使用的系统是利用浏览器的userAgent. navigator.userAgent:userAgent 获取了浏览器用于 HTTP 请求的用户代理头的值. navigator.pla ...

  10. ELK学习总结(2-5)elk的版本控制

    ----------------------------------------------------------------- 1.悲观锁和乐观锁 悲观锁:假定会发生并发冲突,屏蔽一切可能违反数据 ...