bzoj2005 NOI2010 方案统计
2005: [Noi2010]能量采集
Time Limit: 10 Sec Memory Limit: 552 MB
Submit: 4387 Solved: 2619
[Submit][Status][Discuss]
Description
栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。
Input
仅包含一行,为两个整数n和m。
Output
仅包含一个整数,表示总共产生的能量损失。
Sample Input
【样例输入1】
5 4
【样例输入2】
3 4
Sample Output
【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。
80分
首先一个结论:两个点横纵坐标差为x,y,则他们线段上的整点个数为gcd(x,y)-1 (不包含端点)
n,m<=1000 可以直接枚举i,j ans+=gcd(i,j)*2-1
100分
注意到gcd(i,j)=d <=1e5 那么可以枚举d,ans+=(d*2-1)*f[d] 其中f[d]为gcd(i,j)为d的个数
那么问题就转化成了f[d]怎么求
在i<=n,j<=m中, 公因数有d的数对有(n/d)*(m/d)个
但是最小公因数为d的,就要减去f[d*k](k>=2&&k*d<=min(n,m))
所以我们倒序枚举求f[]即可
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
#define ll long long
#define N 100005
using namespace std;
int n,m;ll f[N]; int gcd(int x,int y){
if(y==)return x;
return gcd(y,x%y);
}
int main(){
#ifdef wsy
freopen("data.in","r",stdin);
#else
freopen("energy.in","r",stdin);
freopen("energy.out","w",stdout);
#endif
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
ll ans=;
for(int i=n;i;i--){
f[i]=(ll)(n/i)*(m/i);
for(int j=i+i;j<=n;j+=i)
f[i]-=f[j];
ans+=f[i]*(*i-);
}
printf("%lld",ans);
return ;
}
bzoj2005 NOI2010 方案统计的更多相关文章
- POJ 3093 Margaritas(Kind of wine) on the River Walk (背包方案统计)
题目 Description One of the more popular activities in San Antonio is to enjoy margaritas in the park ...
- BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】
BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...
- bzoj2005: [Noi2010]能量采集
lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...
- [BZOJ2005][Noi2010]能量采集 容斥+数论
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4394 Solved: 2624[Submit][Statu ...
- 低价购买(LIS方案统计)
题意:https://www.luogu.com.cn/problem/P1108 如果两个数列组成的数字完全相同,那我们说这两个数列相同. 求出最长下降子序列的方案数. 题解来自 wjyyy大神. ...
- BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛
分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...
- 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集
Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...
- [luogu1447][bzoj2005][NOI2010]能量采集
题目大意 求出\(\sum_{i=1}^{n} \sum_{i=1}^{m} gcd(i,j)\times 2 -1\). 题解 解法还是非常的巧妙的,我们考虑容斥原理.我们定义\(f[i]\)表示\ ...
- POJ 1426 Find The Multiple(背包方案统计)
Description Given a positive integer n, write a program to find out a nonzero multiple m of n whose ...
随机推荐
- Scala Option类型
转载自: Scala 初学者指南, 这里有一系列很棒的文章 类型 Option 可能你已经见过它在 Map API 中的使用:在实现自己的提取器时,我们也用过它, 然而,它还需要更多的解释. 你可能会 ...
- day-3 python多线程编程知识点汇总
python语言以容易入门,适合应用开发,编程简洁,第三方库多等等诸多优点,并吸引广大编程爱好者.但是也存在一个被熟知的性能瓶颈:python解释器引入GIL锁以后,多CPU场景下,也不再是并行方式运 ...
- vue style width a href动态拼接问题 ?
style width 这个问题 折磨了我一个上午了 好惭愧 因为项目涉及到 进度条 所以必须用行内样式 style 用过vue的都知道 vue中style的用法 大众用法 :style=&quo ...
- slf4j 与 log4j2 实战讲解与日志分割
这两天搭建项目的时候用到log4j2在这里把自己的问题与了解拿出来与大家分享一下. 1.为什我要用 因为,使用slf4j可以很好的保证我们的日志系统具有良好的兼容性,兼容当前常见几种日志系统,而使用l ...
- 利用java反射读写csv中的数据
前一段有个需求需要将从数据库读取到的信息保存到csv文件中,在实现该需求的时候发现资料比较少,经过收集反射和csv相关资料,最终得到了如下程序. 1.在使用java反射读取csv文件数据时,先通 ...
- 使用 Vue 和 epub.js 制作电子书阅读器
ePub 简介 ePub 是一种电子书的标准格式,平时我看的电子书大部分是这种格式.在手机上我一般用"多看"阅读 ePub 电子书,在 Windows 上找不到用起来比较顺心的软件 ...
- Docker学习笔记 - Docker数据卷的备份和还原
学习目标: 备份数据卷 还原数据卷 # 通过容器备份数据卷容器中的数据卷 docker run --volumes-from dvt5 -v ~/backup:/backup --name dvt10 ...
- docker生态系统
我的docker学习笔记6-docker生态 1.镜像即应用 代码构建.持续集成和持续交付 DaoCloud.Quay.IO 2.催生容器托管caas服务 基 ...
- mongodb 索引的基本命令
mongodb的索引: 在数据量超大的时候,能够极大的增快查询速率,但是会降低更新效率.建立索引: db.集合.ensureIndex({属性:1}) //1代表升序 -1代表降序 db.集合.ens ...
- mysql 索引学习--多条件等值查询,顺序不同也能应用联合索引啦
以前学习这一块的时候,是说:假设建立了联合索引a+b,那么查询语句也一定要是这个顺序才能应用该索引. 那么实际是怎样呢,经过mysql这么多次版本升级,相信mysql已经给我们做了某些优化. 下面是我 ...