2005: [Noi2010]能量采集

Time Limit: 10 Sec  Memory Limit: 552 MB
Submit: 4387  Solved: 2619
[Submit][Status][Discuss]

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,

栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列

有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,

表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了

一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器

连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于

连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植

物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20

棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能

量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4
【样例输入2】
3 4

Sample Output

【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。

80分

首先一个结论:两个点横纵坐标差为x,y,则他们线段上的整点个数为gcd(x,y)-1 (不包含端点)

n,m<=1000 可以直接枚举i,j  ans+=gcd(i,j)*2-1

100分

注意到gcd(i,j)=d  <=1e5  那么可以枚举d,ans+=(d*2-1)*f[d]  其中f[d]为gcd(i,j)为d的个数

那么问题就转化成了f[d]怎么求

在i<=n,j<=m中, 公因数有d的数对有(n/d)*(m/d)个

但是最小公因数为d的,就要减去f[d*k](k>=2&&k*d<=min(n,m))

所以我们倒序枚举求f[]即可

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
#define ll long long
#define N 100005
using namespace std;
int n,m;ll f[N]; int gcd(int x,int y){
if(y==)return x;
return gcd(y,x%y);
}
int main(){
#ifdef wsy
freopen("data.in","r",stdin);
#else
freopen("energy.in","r",stdin);
freopen("energy.out","w",stdout);
#endif
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
ll ans=;
for(int i=n;i;i--){
f[i]=(ll)(n/i)*(m/i);
for(int j=i+i;j<=n;j+=i)
f[i]-=f[j];
ans+=f[i]*(*i-);
}
printf("%lld",ans);
return ;
}

bzoj2005 NOI2010 方案统计的更多相关文章

  1. POJ 3093 Margaritas(Kind of wine) on the River Walk (背包方案统计)

    题目 Description One of the more popular activities in San Antonio is to enjoy margaritas in the park ...

  2. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

  3. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  4. [BZOJ2005][Noi2010]能量采集 容斥+数论

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4394  Solved: 2624[Submit][Statu ...

  5. 低价购买(LIS方案统计)

    题意:https://www.luogu.com.cn/problem/P1108 如果两个数列组成的数字完全相同,那我们说这两个数列相同. 求出最长下降子序列的方案数. 题解来自 wjyyy大神. ...

  6. BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

    分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...

  7. 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集

    Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...

  8. [luogu1447][bzoj2005][NOI2010]能量采集

    题目大意 求出\(\sum_{i=1}^{n} \sum_{i=1}^{m} gcd(i,j)\times 2 -1\). 题解 解法还是非常的巧妙的,我们考虑容斥原理.我们定义\(f[i]\)表示\ ...

  9. POJ 1426 Find The Multiple(背包方案统计)

    Description Given a positive integer n, write a program to find out a nonzero multiple m of n whose ...

随机推荐

  1. 视频聊天 Demo

    ESFramework Demo -- 入门Demo,简单的即时通讯系统(附源码) 是基于ESFramework实现的一个简单的文字聊天demo,现在,我们将在这个demo的基础上,使用OMCS为其增 ...

  2. NetFPGA-1G-CML从零开始环境配置

    NetFPGA-1G-CML从零开始环境配置 前言 偶得一块NetFPGA-1G-CML,跟着github对NetFPGA-1G-CML的入门指南,一步步把配置环境终于搭建起来,下面重新复现一下此过程 ...

  3. loadrunner下载资源时步骤下载超时 (120 seconds) 已过期

    下载资源所用时间超过120秒时,就会报出这个错误,解决方法是设置加大超时时间 运行时设置(快捷键F4) Internet 协议--首选项--高级--选项--General--步骤下载超时(秒) 可以把 ...

  4. ThinkPad安装deepin操作系统报错解决方法

    目前deepin操作系统,软件也比较多,所以想在自己的thinkpad t430笔记本上安装.但是安装时报错,具体错误忘了看了.反复试了好几次都不行,最后在网上查了,讲bios设置调整之后可以正常安装 ...

  5. 《javascript设计模式与开发实践》阅读笔记(13)—— 职责链模式

    职责链模式 使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系,将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它为止. 书里的订单的例子 假设我们负责一个售卖手机 ...

  6. 12-TypeScript总结

    从前面的文章大家可以看出,TypeScript具有先天的优势,建议前端开发人员使用TypeScript进行开发,提升自己的面向对象开发思想与能力.: 1.微软开源的客户端脚本语言,是JavaScrip ...

  7. 移动端300ms与点透总结

    300ms,主要发生在mobile 为啥会出现300ms延迟现象 浏览器想知道用户是否dobule tap(双击缩放) 下列情况不会出现300ms延迟 桌面浏览器 meta的viewport设置了us ...

  8. hadoop原理

    MapReduce工作原理图文详解 前言:   前段时间我们云计算团队一起学习了hadoop相关的知识,大家都积极地做了.学了很多东西,收获颇丰.可是开学后,大家都忙各自的事情,云计算方面的动静都不太 ...

  9. 【iOS】 含tableView的ViewController基类的实现

    上篇博客写了ViewController的基类的实现,这篇博客主要写在BaseViewController的基础上实现一个含tableView控件的基类的实现,主要给包含tableView的页面来继承 ...

  10. highstaock+websocket实现动态展现

    效果:从后台获取回测数据,在前端动态展现,和聚宽实现的回测效果相仿 大体思路:先传一个[[int,0],[int,0],[int,0],[int,0],[int,0],...]格式的死数据到前端渲染x ...