bzoj2005 NOI2010 方案统计
2005: [Noi2010]能量采集
Time Limit: 10 Sec Memory Limit: 552 MB
Submit: 4387 Solved: 2619
[Submit][Status][Discuss]
Description
栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。
Input
仅包含一行,为两个整数n和m。
Output
仅包含一个整数,表示总共产生的能量损失。
Sample Input
【样例输入1】
5 4
【样例输入2】
3 4
Sample Output
【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。
80分
首先一个结论:两个点横纵坐标差为x,y,则他们线段上的整点个数为gcd(x,y)-1 (不包含端点)
n,m<=1000 可以直接枚举i,j ans+=gcd(i,j)*2-1
100分
注意到gcd(i,j)=d <=1e5 那么可以枚举d,ans+=(d*2-1)*f[d] 其中f[d]为gcd(i,j)为d的个数
那么问题就转化成了f[d]怎么求
在i<=n,j<=m中, 公因数有d的数对有(n/d)*(m/d)个
但是最小公因数为d的,就要减去f[d*k](k>=2&&k*d<=min(n,m))
所以我们倒序枚举求f[]即可
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
#define ll long long
#define N 100005
using namespace std;
int n,m;ll f[N]; int gcd(int x,int y){
if(y==)return x;
return gcd(y,x%y);
}
int main(){
#ifdef wsy
freopen("data.in","r",stdin);
#else
freopen("energy.in","r",stdin);
freopen("energy.out","w",stdout);
#endif
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
ll ans=;
for(int i=n;i;i--){
f[i]=(ll)(n/i)*(m/i);
for(int j=i+i;j<=n;j+=i)
f[i]-=f[j];
ans+=f[i]*(*i-);
}
printf("%lld",ans);
return ;
}
bzoj2005 NOI2010 方案统计的更多相关文章
- POJ 3093 Margaritas(Kind of wine) on the River Walk (背包方案统计)
题目 Description One of the more popular activities in San Antonio is to enjoy margaritas in the park ...
- BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】
BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...
- bzoj2005: [Noi2010]能量采集
lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...
- [BZOJ2005][Noi2010]能量采集 容斥+数论
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4394 Solved: 2624[Submit][Statu ...
- 低价购买(LIS方案统计)
题意:https://www.luogu.com.cn/problem/P1108 如果两个数列组成的数字完全相同,那我们说这两个数列相同. 求出最长下降子序列的方案数. 题解来自 wjyyy大神. ...
- BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛
分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...
- 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集
Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...
- [luogu1447][bzoj2005][NOI2010]能量采集
题目大意 求出\(\sum_{i=1}^{n} \sum_{i=1}^{m} gcd(i,j)\times 2 -1\). 题解 解法还是非常的巧妙的,我们考虑容斥原理.我们定义\(f[i]\)表示\ ...
- POJ 1426 Find The Multiple(背包方案统计)
Description Given a positive integer n, write a program to find out a nonzero multiple m of n whose ...
随机推荐
- 视频聊天 Demo
ESFramework Demo -- 入门Demo,简单的即时通讯系统(附源码) 是基于ESFramework实现的一个简单的文字聊天demo,现在,我们将在这个demo的基础上,使用OMCS为其增 ...
- NetFPGA-1G-CML从零开始环境配置
NetFPGA-1G-CML从零开始环境配置 前言 偶得一块NetFPGA-1G-CML,跟着github对NetFPGA-1G-CML的入门指南,一步步把配置环境终于搭建起来,下面重新复现一下此过程 ...
- loadrunner下载资源时步骤下载超时 (120 seconds) 已过期
下载资源所用时间超过120秒时,就会报出这个错误,解决方法是设置加大超时时间 运行时设置(快捷键F4) Internet 协议--首选项--高级--选项--General--步骤下载超时(秒) 可以把 ...
- ThinkPad安装deepin操作系统报错解决方法
目前deepin操作系统,软件也比较多,所以想在自己的thinkpad t430笔记本上安装.但是安装时报错,具体错误忘了看了.反复试了好几次都不行,最后在网上查了,讲bios设置调整之后可以正常安装 ...
- 《javascript设计模式与开发实践》阅读笔记(13)—— 职责链模式
职责链模式 使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系,将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它为止. 书里的订单的例子 假设我们负责一个售卖手机 ...
- 12-TypeScript总结
从前面的文章大家可以看出,TypeScript具有先天的优势,建议前端开发人员使用TypeScript进行开发,提升自己的面向对象开发思想与能力.: 1.微软开源的客户端脚本语言,是JavaScrip ...
- 移动端300ms与点透总结
300ms,主要发生在mobile 为啥会出现300ms延迟现象 浏览器想知道用户是否dobule tap(双击缩放) 下列情况不会出现300ms延迟 桌面浏览器 meta的viewport设置了us ...
- hadoop原理
MapReduce工作原理图文详解 前言: 前段时间我们云计算团队一起学习了hadoop相关的知识,大家都积极地做了.学了很多东西,收获颇丰.可是开学后,大家都忙各自的事情,云计算方面的动静都不太 ...
- 【iOS】 含tableView的ViewController基类的实现
上篇博客写了ViewController的基类的实现,这篇博客主要写在BaseViewController的基础上实现一个含tableView控件的基类的实现,主要给包含tableView的页面来继承 ...
- highstaock+websocket实现动态展现
效果:从后台获取回测数据,在前端动态展现,和聚宽实现的回测效果相仿 大体思路:先传一个[[int,0],[int,0],[int,0],[int,0],[int,0],...]格式的死数据到前端渲染x ...