bzoj2005 NOI2010 方案统计
2005: [Noi2010]能量采集
Time Limit: 10 Sec Memory Limit: 552 MB
Submit: 4387 Solved: 2619
[Submit][Status][Discuss]
Description
栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。
Input
仅包含一行,为两个整数n和m。
Output
仅包含一个整数,表示总共产生的能量损失。
Sample Input
【样例输入1】
5 4
【样例输入2】
3 4
Sample Output
【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。
80分
首先一个结论:两个点横纵坐标差为x,y,则他们线段上的整点个数为gcd(x,y)-1 (不包含端点)
n,m<=1000 可以直接枚举i,j ans+=gcd(i,j)*2-1
100分
注意到gcd(i,j)=d <=1e5 那么可以枚举d,ans+=(d*2-1)*f[d] 其中f[d]为gcd(i,j)为d的个数
那么问题就转化成了f[d]怎么求
在i<=n,j<=m中, 公因数有d的数对有(n/d)*(m/d)个
但是最小公因数为d的,就要减去f[d*k](k>=2&&k*d<=min(n,m))
所以我们倒序枚举求f[]即可
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
#define ll long long
#define N 100005
using namespace std;
int n,m;ll f[N]; int gcd(int x,int y){
if(y==)return x;
return gcd(y,x%y);
}
int main(){
#ifdef wsy
freopen("data.in","r",stdin);
#else
freopen("energy.in","r",stdin);
freopen("energy.out","w",stdout);
#endif
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
ll ans=;
for(int i=n;i;i--){
f[i]=(ll)(n/i)*(m/i);
for(int j=i+i;j<=n;j+=i)
f[i]-=f[j];
ans+=f[i]*(*i-);
}
printf("%lld",ans);
return ;
}
bzoj2005 NOI2010 方案统计的更多相关文章
- POJ 3093 Margaritas(Kind of wine) on the River Walk (背包方案统计)
题目 Description One of the more popular activities in San Antonio is to enjoy margaritas in the park ...
- BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】
BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...
- bzoj2005: [Noi2010]能量采集
lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...
- [BZOJ2005][Noi2010]能量采集 容斥+数论
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4394 Solved: 2624[Submit][Statu ...
- 低价购买(LIS方案统计)
题意:https://www.luogu.com.cn/problem/P1108 如果两个数列组成的数字完全相同,那我们说这两个数列相同. 求出最长下降子序列的方案数. 题解来自 wjyyy大神. ...
- BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛
分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...
- 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集
Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...
- [luogu1447][bzoj2005][NOI2010]能量采集
题目大意 求出\(\sum_{i=1}^{n} \sum_{i=1}^{m} gcd(i,j)\times 2 -1\). 题解 解法还是非常的巧妙的,我们考虑容斥原理.我们定义\(f[i]\)表示\ ...
- POJ 1426 Find The Multiple(背包方案统计)
Description Given a positive integer n, write a program to find out a nonzero multiple m of n whose ...
随机推荐
- .NET Core装饰模式和.NET Core的Stream
该文章综合了几本书的内容. 某咖啡店项目的解决方案 某咖啡店供应咖啡, 客户买咖啡的时候可以添加若干调味料, 最后要求算出总价钱. Beverage是所有咖啡饮料的抽象类, 里面的cost方法是抽象的 ...
- java8-Stream之数值流
在Stream里元素都是对象,那么,当我们操作一个数字流的时候就不得不考虑一个问题,拆箱和装箱.虽然自动拆箱不需要我们处理,但依旧有隐含的成本在里面.Java8引入了3个原始类型特化流接口来解决这个问 ...
- raid5 阵列硬盘离线数据恢复成功案例
数据恢复故障描述: 某研究院 DELL 磁盘阵列崩溃,内置15块1TB硬盘搭建的RAID5阵列.一开始有一块硬盘离线,在更换新硬盘进行同步的过程中,第二块磁盘指示灯报警,同步失败,阵列无法正常工作. ...
- JAVA_SE基础——60.初识Object
java是面向对象的语言,核心思想:找适合 的对象做适合 的事情:方式一:自定义类,然后通过自定义的类创建对象.方式二:sun提供了很多的类给我使用,我们只需要认识这些类,我们就可以通过这些类创建对象 ...
- ( 转 ) CORS 有一次 OPTIONS 请求的原理
刚接触前端的时候,以为HTTP的Request Method只有GET与POST两种,后来才了解到,原来还有HEAD.PUT.DELETE.OPTIONS-- 目前的工作中,HEAD.PUT.DELE ...
- 开发技巧(3-1)Eclipse查找关键字
1.选择资源目录->选择search-file菜单 2.在弹出的对话框中, 输入要[搜索的字符串],选择[selected resources],点击[search]按钮 3.搜索结果
- C# word文档转换成PDF格式文档
最近用到一个功能word转pdf,有个方法不错,挺方便的,直接调用即可,记录下 方法:ConvertWordToPdf(string sourcePath, string targetPath) so ...
- 记java应用linux服务单个CPU使用率100%分析
之前在做项目的过程中,项目完成后在linux服务器上做性能测试,当服务跑起来的时候发现cpu使用率很奇怪,java应用把单个cpu跑满了,其他cpu利用率0%. 刚开始遇到这问题的时候我第一时间反应使 ...
- MYSQL之视图、触发器、存储过程、函数、事物、数据库锁和数据库备份
一.视图 -- view 视图:是一个虚报表,其内容由查询定义.同真实的表一样,视图包含一系列带有名称的列和行数据. 视图有如下特点: 1.视图的列可以来自不同的表,是表的抽象和逻辑意义上建立的新关系 ...
- 如何用webgl(three.js)搭建一个3D库房-第二课
闲话少叙,我们接着第一课继续讲(http://www.cnblogs.com/yeyunfei/p/7899613.html),很久没有做技术分享了.很多人问第二课有没有,我也是抽空写一下第二课. 第 ...