Demo侠可能是我等小白进阶的必经之路了,如今在AI领域,我也是个研究Demo的小白。用了两三天装好环境,跑通Demo,自学Python语法,进而研究这个Demo。当然过程中查了很多资料,充分发挥了小白的主观能动性,总算有一些收获需要总结下。

  不多说,算法在代码中,一切也都在代码中。

 import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '' #获得数据集
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) import tensorflow as tf #输入图像数据占位符
x = tf.placeholder(tf.float32, [None, 784]) #权值和偏差
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10])) #使用softmax模型
y = tf.nn.softmax(tf.matmul(x, W) + b) #代价函数占位符
y_ = tf.placeholder(tf.float32, [None, 10]) #交叉熵评估代价
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) #使用梯度下降算法优化:学习速率为0.5
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) #Session(交互方式)
sess = tf.InteractiveSession() #初始化变量
tf.global_variables_initializer().run() #训练模型,训练1000次
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) #计算正确率
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

  看完这个Demo,顿时感觉Python真是一门好语言,Tensorflow是一个好框架,就跟之前掌握Matlab以后,用Matlab做仿真的感觉一样。

  为什么看这几行代码看了两三天,因为看懂很容易,但了解代码背后的意义更重要,如果把一个Demo看透了,那么后边举一反三就会很容易了,我向来就是这样学习的,本小白当年也是个学霸?!

  来一起看下这里边有什么玄机和坑吧,记录一下,人老了记性不好(^-^)。

  看到1,2行代码,不要懵,这个作用是设置日志级别,os.environ["TF_CPP_MIN_LOG_LEVEL"]='2' # 只显示 warning 和 Error,等于1是显示所有信息。不加这两行会有个提示(Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2,具体可以看这里) 

  第5行是一个引用声明,从tensorflow.examples.tutorials.mnist 引用一个名为 input_data 的函数,可以看一下input_data是什么样子的:

 from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import gzip
import os
import tempfile import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets

  原来input_data里边也是引用声明,真正想用到的实际是tensorflow.contrib.learn.python.learn.datasets.mnist里的read_data_sets,看一下代码:

 def read_data_sets(train_dir,
fake_data=False,
one_hot=False,
dtype=dtypes.float32,
reshape=True,
validation_size=5000,
seed=None,
source_url=DEFAULT_SOURCE_URL):
if fake_data:
... if not source_url: # empty string check
... local_file = base.maybe_download(TRAIN_IMAGES, train_dir,
source_url + TRAIN_IMAGES)
with gfile.Open(local_file, 'rb') as f:
train_images = extract_images(f) ... if not 0 <= validation_size <= len(train_images):
raise ValueError('Validation size should be between 0 and {}. Received: {}.'
.format(len(train_images), validation_size)) validation_images = train_images[:validation_size]
validation_labels = train_labels[:validation_size]
train_images = train_images[validation_size:]
train_labels = train_labels[validation_size:] options = dict(dtype=dtype, reshape=reshape, seed=seed) train = DataSet(train_images, train_labels, **options)
validation = DataSet(validation_images, validation_labels, **options)
test = DataSet(test_images, test_labels, **options) return base.Datasets(train=train, validation=validation, test=test)

  mnist最终得到的是base.Datasets,完成了数据读取。这里边的细节还需要完了再仔细研究下。

  顺便记录下自编的函数的定义方法:

 def Mycollect(My , thing):

     try:
count = My[thing]
except KeyError:
count = 0 return count from TestFunction import Mycollect
My = {'a':10, 'b':15, 'c':5}
thing = 'a'
print(Mycollect(My , thing));

  第11行的placeholder,需要注意下,是用了占位符,也就是先安排位置,而不先提供具体数据,也就是说都是模型(管道)的构建过程(这里用管道来类比,我觉得比较恰当)。注意下placeholder的语法就可以,指定了type和shape,这里的None表示有多少幅图片是未知的,也就是说样本数是未知的。这里的坑在于,如果我们用print看的话会发现,构建的是张量(Tensor)而不是矩阵,这里对熟悉matlab的同学来说可能是个坑。可以注意下张量的定义方式。

  第14和15行是定义了变量,如果只看tf.zeros([10])的话也是个张量的,只是外边又加了变量的声明。所以后边可以直接乘的,这个也不难理解了。

  第18行的matmul是张量相乘,然后使用了softmax模型,目的是把结果进行概率化。巧妙,只想说这两个字,这个就是进行归一化,搞算法这个是比较常用的,学校时候这个词很火,我们最终想得到的是一个指定的数组,所以用这个模型来匹配我的规则。

  21行是什么,看完就知道是实际的输出,然后在24行做交叉熵。终于又碰到熵这个老朋友了。交叉熵简单理解为概率分布的距离,在这里作为一个loss_function。第27行使用了梯度下降来优化这个loss_function,最终是想找到最优时候的一个模型,这里的最优指的是通过这个模型,得到的结果和实际值最接近。

  第30行,创建一个session。

  第33行,初始化变量。

  第37行,可以去看下next_batch的源码,作用是选取100个样本来训练。

  第41行,注意equal函数的作用,第43行来做类型转换,然后取平均值。(代码很巧妙,很优雅,很爽)

  最终第44行输出模型的准确率。

  好了,这大概就是我的一点点总结了,算是入了个门,接下来我会更多的举一反三,深入掌握其精髓,我会努力走得更远。

  作为一个小白,我要继续努力向大牛学习,吃饭去咯,下周再战。

 

  

MNIST手写识别的更多相关文章

  1. tensorflow笔记(四)之MNIST手写识别系列一

    tensorflow笔记(四)之MNIST手写识别系列一 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7436310.html ...

  2. tensorflow笔记(五)之MNIST手写识别系列二

    tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...

  3. win10下通过Anaconda安装TensorFlow-GPU1.3版本,并配置pycharm运行Mnist手写识别程序

    折腾了一天半终于装好了win10下的TensorFlow-GPU版,在这里做个记录. 准备安装包: visual studio 2015: Anaconda3-4.2.0-Windows-x86_64 ...

  4. Tensorflow之基于MNIST手写识别的入门介绍

    Tensorflow是当下AI热潮下,最为受欢迎的开源框架.无论是从Github上的fork数量还是star数量,还是从支持的语音,开发资料,社区活跃度等多方面,他当之为superstar. 在前面介 ...

  5. 使用tensorflow实现mnist手写识别(单层神经网络实现)

    import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data import n ...

  6. Tensorflow编程基础之Mnist手写识别实验+关于cross_entropy的理解

    好久没有静下心来写点东西了,最近好像又回到了高中时候的状态,休息不好,无法全心学习,恶性循环,现在终于调整的好一点了,听着纯音乐突然非常伤感,那些曾经快乐的大学时光啊,突然又慢慢的一下子出现在了眼前, ...

  7. Haskell手撸Softmax回归实现MNIST手写识别

    Haskell手撸Softmax回归实现MNIST手写识别 前言 初学Haskell,看的书是Learn You a Haskell for Great Good, 才刚看到Making Our Ow ...

  8. 基于tensorflow的MNIST手写识别

    这个例子,是学习tensorflow的人员通常会用到的,也是基本的学习曲线中的一环.我也是! 这个例子很简单,这里,就是简单的说下,不同的tensorflow版本,相关的接口函数,可能会有不一样哟.在 ...

  9. Tensorflow实践:CNN实现MNIST手写识别模型

    前言 本文假设大家对CNN.softmax原理已经比较熟悉,着重点在于使用Tensorflow对CNN的简单实践上.所以不会对算法进行详细介绍,主要针对代码中所使用的一些函数定义与用法进行解释,并给出 ...

  10. 基于tensorflow实现mnist手写识别 (多层神经网络)

    标题党其实也不多,一个输入层,三个隐藏层,一个输出层 老样子先上代码 导入mnist的路径很长,现在还记不住 import tensorflow as tf import tensorflow.exa ...

随机推荐

  1. Day13 CSS的与应用

    老师博客:http://www.cnblogs.com/yuanchenqi/articles/6856399.html 1,CSS选择器的应用: CSS规则有两个主要部分构成:选择器,以及一条或多条 ...

  2. 零基础自学Python十天,写了一款猜数字小游戏,附源码和软件下载链接!

    自学一门语言最重要的是要及时给自己反馈,那么经常写一些小程序培养语感很重要,写完可以总结一下程序中运用到了哪些零散的知识点. 本程序中运用到的知识点有: 1.输入输出函数 (input.print) ...

  3. MinGW安装与使用简介

    MinGW 安装与使用简介 安装方法:其实很简单,如下: Step one: 到这里下载 MinGW, 网速慢的话可能打不开, 是个外国网站 (上面的网站镜像可能 出了点问题 , 有的东西下载下来却不 ...

  4. AdminIII连接linux Postgresql过程中的几个小问题

    1.postgresql.conf主配置文件中要配置postgresql绑定的IP,如果不设置,可能只绑定本地闭环地址:127.0.0.1,可以设定为0.0.0.0:就包括了一切IPv4地址 2.pg ...

  5. JAVAEE——BOS物流项目13:Quartz概述、创建定时任务、使用JavaMail发送邮件、HighCharts概述、实现区域分区分布图

    1 学习计划 1.Quartz概述 n Quartz介绍和下载 n 入门案例 n Quartz执行流程 n cron表达式 2.在BOS项目中使用Quartz创建定时任务 3.在BOS项目中使用Jav ...

  6. thinkphp实现数据分页

    方法一: public function show_cate(){ $category_name = array( '1' => '政法综治前沿', '2' => '政策法规', '3' ...

  7. Java程序基础编程基础

    1.在屏幕上输出"你好" //Programmer name Helloword.javapublic class Helloword { public static void m ...

  8. 非正则表达式检验邮箱格式是否合法(Java代码实现)

    一.邮箱格式需满足以下要求 1. 有且只有一个@                        2. @不能放在开头,也不能放在结尾                        3. @之后必须有. ...

  9. java I/O流详解

    概况 I/O流主要分为二大类别:字符流和字节流. 字节流(基本流) 1.字节输入流    类名:FileInputStream    特点:读(对文件进行读取操作)    父类:InputStream ...

  10. 通过jdbc完成单表的curd操作以及对JDBCUtils的封装

    概述:jdbc是oracle公司制定的一套规范(一套接口),驱动是jdbc的实现类,由数据库厂商提供.所以我们可以通过一套规范实现对不同的数据库操作(多态) jdbc的作用:连接数据库,发送sql语句 ...