[BZOJ 4589]Hard Nim
Description
两人玩 \(nim\) 游戏,\(n\) 堆石子,每堆石子初始数量是不超过 \(m\) 的质数,那么后手必胜的方案有多少种。对 \(10^9+7\) 取模。
\(1\leq n\leq 10^9,2\leq m\leq 50000\)
Solution
我们记多项式 \(A(x)\) ,对于 \(x_i\) 若 \(i\leq m\) 且 \(i\) 为质数,那么 \(x_i\) 的系数为 \(1\) ,其余情况系数为 \(0\) 。
显然当 \(n=2\) 时,令多项式
\[C(x)=A(x)\oplus A(x)\]
其中 \(\oplus\) 为按位异或。那么 \(c_0\) 即为答案。
更多地, \(C(x)=A^n(x)\) ,那么 \(c_0\) 就是 \(n\) 堆石子的方案数。
\(FWT\) 乱搞一下即可。
Code
#include <bits/stdc++.h>
using namespace std;
const int mod = 1e9+7, N = 50000;
int isprime[N+5], prime[N+5], tot, n, m, len, inv2;
int f[N*2+5], a[N*2+5];
int quick_pow(int a, int b) {
int ans = 1;
while (b) {
if (b&1) ans = 1ll*ans*a%mod;
b >>= 1, a = 1ll*a*a%mod;
}
return ans;
}
void get_prime() {
memset(isprime, 1, sizeof(isprime)); isprime[1] = 0;
for (int i = 2; i <= N; i++) {
if (isprime[i]) prime[++tot] = i;
for (int j = 1; j <= tot && i*prime[j] <= N; j++) {
isprime[i*prime[j]] = 0;
if (i%prime[j] == 0) break;
}
}
}
void FWT(int *A, int o) {
for (int i = 1; i < len; i <<= 1)
for (int j = 0; j < len; j += (i<<1))
for (int k = 0; k < i; k++) {
int x = A[k+j], y = A[k+j+i];
A[k+j] = (x+y)%mod, A[k+j+i] = (x-y+mod)%mod;
if (o == -1) A[k+j] = 1ll*A[k+j]*inv2%mod, A[k+j+i] = 1ll*A[k+j+i]*inv2%mod;
}
}
void work() {
inv2 = quick_pow(2, mod-2);
get_prime();
while (~scanf("%d%d", &n, &m)) {
memset(f, 0, sizeof(f));
for (int i = 1; i <= tot && prime[i] <= m; i++) f[prime[i]] = 1;
memset(a, 0, sizeof(a)); a[0] = 1;
for (len = 1; len <= m; len <<= 1);
FWT(a, 1), FWT(f, 1);
while (n) {
if (n&1) for (int i = 0; i < len; i++) a[i] = 1ll*a[i]*f[i]%mod;
for (int i = 0; i < len; i++) f[i] = 1ll*f[i]*f[i]%mod;
n >>= 1;
}
FWT(a, -1); printf("%d\n", a[0]);
}
}
int main() {work(); return 0; }
[BZOJ 4589]Hard Nim的更多相关文章
- FWT [BZOJ 4589:Hard Nim]
4589: Hard Nim Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 275 Solved: 152[Submit][Status][Disc ...
- BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4589 [题目大意] 有n堆石子,每堆都是m以内的质数,请问后手必胜的局面有几种 [题解 ...
- bzoj 4589 Hard Nim——FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 一开始异或和为0的话先手必败.有 n 堆,每堆可以填那些数,求最后异或和为0的方案数, ...
- BZOJ 4589 Hard Nim(FWT加速DP)
题目链接 Hard Nim 设$f[i][j]$表示前$i$个数结束后异或和为$j$的方案数 那么$f[i][j] = f[i-1][j$ $\hat{}$ $k]$,满足$k$为不大于$m$的质数 ...
- bzoj 4589 Hard Nim —— FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 先手必败,是一开始所有石子的异或和为0: 生成函数 (xpri[1] + xpri[2 ...
- bzoj 4589: Hard Nim【线性筛+FWT+快速幂】
T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次-- 就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子 #in ...
- BZOJ.4589.Hard Nim(FWT)
题目链接 FWT 题意即,从所有小于\(m\)的质数中,选出\(n\)个数,使它们异或和为\(0\)的方案数. 令\(G(x)=[x是质数]\),其实就是对\(G(x)\)做\(n\)次异或卷积后得到 ...
- BZOJ 4589 Hard Nim ——FWT
[题目分析] 位运算下的卷积问题. FWT直接做. 但还是不太民白,发明者要承担泽任的. [代码] #include <cstdio> #include <cstring> # ...
- 【bzoj 4589】Hard Nim
题目 根据我为数不多的博弈知识我发现需要求多少种方案使得异或和为\(0\) 非常显然就是构造出那个质数多项式\(F\),答案就是\(F^n(0)\),当然这里是异或卷积 于是美滋滋的敲上去一个多项式快 ...
随机推荐
- Semaphore 源码分析
Semaphore 源码分析 1. 在阅读源码时做了大量的注释,并且做了一些测试分析源码内的执行流程,由于博客篇幅有限,并且代码阅读起来没有 IDE 方便,所以在 github 上提供JDK1.8 的 ...
- 2017C语言程序设计预备作业
Deadline:2017-9-30 23:00 一.学习使用MarkDown 本学期的博客随笔都将使用MarkDown格式,要求熟练掌握MarkDown语法,学会如何使用标题,插入超链接,列表,插入 ...
- 一起happy--C++小组Alpha版本发布说明
1 功能介绍 该PC端APP,是一个同行者的信息搜索平台,旨在为喜欢游玩,但是身边同学朋友时间冲突,想找人结伴的年轻人提供一个检索平台,让他们尽量能够快速便捷的寻找合适同行者.该APP有登录.注册.主 ...
- C++类型萃取
stl中的迭代器和C++中的类型萃取: http://www.itnose.net/detail/6487058.html 赐教!
- 【Swift】Runtime动态性分析
Swift是苹果2014年发布的编程开发语言,可与Objective-C共同运行于Mac OS和iOS平台,用于搭建基于苹果平台的应用程序.Swift已经开源,目前最新版本为2.2.我们知道Objec ...
- Log4j详细教程
一.入门实例 1.新建一个JAva工程,导入包log4j-1.2.17.jar,整个工程最终目录如下 2.src同级创建并设置log4j.properties ### 设置### log4j.root ...
- LeetCode题型分类及索引
目录 这是一个对LeetCode题目归类的索引,分类标准参考了July大神的<编程之法>以及LeetCode的tag项.分类可能还不太合理,逐步完善,请见谅~ 题主本人也在一点一点的刷题, ...
- 深度学习之 mnist 手写数字识别
深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from ...
- api-gateway实践(02)新服务网关 - 运行环境
一.服务网关的运行环境 1.服务配置中心 1.1.服务配置中心前台 前台 http://10.110.17.20/#/login:无源码,德奎部署在10.110.17.20的DockerStatck环 ...
- 日推20单词 Day01
1.conflict n. 冲突 2.electronic adj. 电子的 3.mine n. 矿藏,地雷 4.mineral n. 矿物质 adj. 矿物的 5.undermine vt 破坏,渐 ...