【资料总结】| Deep Reinforcement Learning 深度强化学习
- 《深度强化学习》英文版(150页),是上一版(70页)的加强版:https://arxiv.org/abs/1810.06339
- 经典书籍:Reinforcement Learning: An Introduction (2nd Edition)
- 论文集,覆盖面比较广,需要一定基础:Reinforcement Learning: State-of-the-Art
- 两个非常全的论文资料集合:
- yuxili: https://medium.com/@yuxili
- Guest Post (Part I): Demystifying Deep Reinforcement Learning
- Guest Post (Part II): Deep Reinforcement Learning with Neon
- Blog Post (Part III): Deep Reinforcement Learning with OpenAI Gym
- Andrej Karpathy blog: Deep Reinforcement Learning: Pong from Pixels
- 南京大学俞杨博士:强化学习前言(强化学习的完整介绍)https://www.leiphone.com/news/201705/uO8nd09EnR77NBRP.html
- 零基础入门:莫烦python:https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/
- David Silver的增强学习课程(有视频和ppt),2015年的,需要一定基础: http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
- 最好的增强学习教材,可以结合David Silver的课程一起看:Sutton & Barto Book: Reinforcement Learning: An Introduction
- 斯坦福CS234:http://web.stanford.edu/class/cs234/index.html
- 伯克利CS294:http://rll.berkeley.edu/deeprlcourse/
- Pieter Abbeel 的AI课程(包含增强学习,使用Pacman实验):Artificial Intelligence
- Pieter Abbeel 的深度增强学习课程:CS 294 Deep Reinforcement Learning, Fall 2015
- Nando de Freitas的深度学习课程 (有视频有ppt有作业):Machine Learning
- Michael Littman的增强学习课程:https://www.udacity.com/course/reinforcement-learning–ud600
- 最新机器人专题课程Penn(2016年开课):Specialization
- Deep Learning Summer School:pptsvideos
- openAI GYM Reinforcement Learning toolkits: https://gym.openai.com
- 强化学习示例演示:https://qqiang00.github.io/reinforce/javascript/demo_iteration.html
- karpathy的各种强化学习的演示:https://cs.stanford.edu/people/karpathy/reinforcejs/index.html
- MIT的强化学习在线学习网站:http://web.mst.edu/~gosavia/rl_website.html
- Awesome-RL: https://github.com/aikorea/awesome-rl
- Flappybird:https://github.com/yenchenlin/DeepLearningFlappyBird
- Deep Reinforcement Learning in Tensorflow:https://github.com/carpedm20/deep-rl-tensorflow
- https://github.com/ShangtongZhang/reinforcement-learning-an-introduction
- GitHub - songrotek/DeepTerrainRL: terrain-adaptive locomotion skills using deep reinforcement learning
- GitHub - songrotek/async-rl: An attempt to reproduce the results of "Asynchronous Methods for Deep Reinforcement Learning" (http://arxiv.org/abs/1602.01783)
- GitHub - songrotek/rllab: rllab is a framework for developing and evaluating reinforcement learning algorithms.
- GitHub - songrotek/DRL-FlappyBird: Playing Flappy Bird Using Deep Reinforcement Learning (Based on Deep Q Learning DQN using Tensorflow)
- GitHub - songrotek/DeepMind-Atari-Deep-Q-Learner: The original code from the DeepMind article + my tweaks
【资料总结】| Deep Reinforcement Learning 深度强化学习的更多相关文章
- temporal credit assignment in reinforcement learning 【强化学习 经典论文】
Sutton 出版论文的主页: http://incompleteideas.net/publications.html Phd 论文: temporal credit assignment i ...
- Deep Reinforcement Learning
Reinforcement-Learning-Introduction-Adaptive-Computation http://incompleteideas.net/book/bookdraft20 ...
- Learning Roadmap of Deep Reinforcement Learning
1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman ...
- 深度学习国外课程资料(Deep Learning for Self-Driving Cars)+(Deep Reinforcement Learning and Control )
MIT(Deep Learning for Self-Driving Cars) CMU(Deep Reinforcement Learning and Control ) 参考网址: 1 Deep ...
- 深度强化学习(Deep Reinforcement Learning)入门:RL base & DQN-DDPG-A3C introduction
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应 ...
- 深度强化学习:入门(Deep Reinforcement Learning: Scratching the surface)
RL的方案 两个主要对象:Agent和Environment Agent观察Environment,做出Action,这个Action会对Environment造成一定影响和改变,继而Agent会从新 ...
- 《DRN: A Deep Reinforcement Learning Framework for News Recommendation》强化学习推荐系统
摘要 新闻推荐系统中,新闻具有很强的动态特征(dynamic nature of news features),目前一些模型已经考虑到了动态特征. 一:他们只处理了当前的奖励(ctr);. 二:有一些 ...
- 深度学习课程笔记(十八)Deep Reinforcement Learning - Part 1 (17/11/27) Lectured by Yun-Nung Chen @ NTU CSIE
深度学习课程笔记(十八)Deep Reinforcement Learning - Part 1 (17/11/27) Lectured by Yun-Nung Chen @ NTU CSIE 201 ...
- 深度强化学习资料(视频+PPT+PDF下载)
https://blog.csdn.net/Mbx8X9u/article/details/80780459 课程主页:http://rll.berkeley.edu/deeprlcourse/ 所有 ...
随机推荐
- [译文]Domain Driven Design Reference(四)—— 柔性设计
本书是Eric Evans对他自己写的<领域驱动设计-软件核心复杂性应对之道>的一本字典式的参考书,可用于快速查找<领域驱动设计>中的诸多概念及其简明解释. 其它本系列其它文章 ...
- CMake入门实战
本文用来记录基本的Cmake用法,以一个实例,讲解如何通过cmake构建一个一个基本的工程,文件的目录如下: 说明: bin文件夹下的debug和release分别存放编译输出的文件和相关依赖的动态库 ...
- Universal-Image-Loader源码解解析---display过程 + 获取bitmap过程
Universal-Image-Loader在github上的地址:https://github.com/nostra13/Android-Universal-Image-Loader 它的基本使用请 ...
- 跳动在网页中间的精灵----Javascript
今天开始js的内容整理,跳动在网页里的精灵就是它了. 一.简介 1.什么是Javascript JavaScript 是一种具有面向对象能力的.解释型的程序设计语言.更具体一点,它是基于对象和事件驱动 ...
- Polaristech 刘洋:基于 OpenResty/Kong 构建边缘计算平台
2019 年 3 月 23 日,OpenResty 社区联合又拍云,举办 OpenResty × Open Talk 全国巡回沙龙·北京站,Polaristech 技术专家刘洋在活动上做了<基于 ...
- Vue 进阶之路(二)
之前的文章我们初识了 vue,对其原理,数据绑定和方法进行了简单的演示,本篇将对 vue 插值表达式,v-text,v-html 进行讲解. <!DOCTYPE html> <htm ...
- 一个C#程序员学习微信小程序的笔记
客户端打开小程序的时候,就将代码包下载到本地进行解析,首先找到了根目录的 app.json ,知道了小程序的所有页面. 在这个Index页面就是我们的首页,客户端在启动的时候,将首页的代码装载进来,通 ...
- Java进阶篇设计模式之六 ----- 组合模式和过滤器模式
前言 在上一篇中我们学习了结构型模式的外观模式和装饰器模式.本篇则来学习下组合模式和过滤器模式. 组合模式 简介 组合模式是用于把一组相似的对象当作一个单一的对象.组合模式依据树形结构来组合对象,用来 ...
- c#在pictureBox控件上绘制多个矩形框及删除绘制的矩形框
在pictureBox上每次只绘制一个矩形框,绘制下一个矩形框时上次绘制的矩形框取消,代码如链接:https://www.cnblogs.com/luxiao/p/5625196.html 在绘制矩形 ...
- Java虚拟机一:运行时数据区域
java虚拟机在执行java程序的过程中,会把内存划分为若干个不同的数据区域.每个区域都有各自的用途,创建和销毁时间,按照<java虚拟机规范(Java SE 7 版)>的规定,虚拟机运行 ...