【资料总结】| Deep Reinforcement Learning 深度强化学习
- 《深度强化学习》英文版(150页),是上一版(70页)的加强版:https://arxiv.org/abs/1810.06339
- 经典书籍:Reinforcement Learning: An Introduction (2nd Edition)
- 论文集,覆盖面比较广,需要一定基础:Reinforcement Learning: State-of-the-Art
- 两个非常全的论文资料集合:
- yuxili: https://medium.com/@yuxili
- Guest Post (Part I): Demystifying Deep Reinforcement Learning
- Guest Post (Part II): Deep Reinforcement Learning with Neon
- Blog Post (Part III): Deep Reinforcement Learning with OpenAI Gym
- Andrej Karpathy blog: Deep Reinforcement Learning: Pong from Pixels
- 南京大学俞杨博士:强化学习前言(强化学习的完整介绍)https://www.leiphone.com/news/201705/uO8nd09EnR77NBRP.html
- 零基础入门:莫烦python:https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/
- David Silver的增强学习课程(有视频和ppt),2015年的,需要一定基础: http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
- 最好的增强学习教材,可以结合David Silver的课程一起看:Sutton & Barto Book: Reinforcement Learning: An Introduction
- 斯坦福CS234:http://web.stanford.edu/class/cs234/index.html
- 伯克利CS294:http://rll.berkeley.edu/deeprlcourse/
- Pieter Abbeel 的AI课程(包含增强学习,使用Pacman实验):Artificial Intelligence
- Pieter Abbeel 的深度增强学习课程:CS 294 Deep Reinforcement Learning, Fall 2015
- Nando de Freitas的深度学习课程 (有视频有ppt有作业):Machine Learning
- Michael Littman的增强学习课程:https://www.udacity.com/course/reinforcement-learning–ud600
- 最新机器人专题课程Penn(2016年开课):Specialization
- Deep Learning Summer School:pptsvideos
- openAI GYM Reinforcement Learning toolkits: https://gym.openai.com
- 强化学习示例演示:https://qqiang00.github.io/reinforce/javascript/demo_iteration.html
- karpathy的各种强化学习的演示:https://cs.stanford.edu/people/karpathy/reinforcejs/index.html
- MIT的强化学习在线学习网站:http://web.mst.edu/~gosavia/rl_website.html
- Awesome-RL: https://github.com/aikorea/awesome-rl
- Flappybird:https://github.com/yenchenlin/DeepLearningFlappyBird
- Deep Reinforcement Learning in Tensorflow:https://github.com/carpedm20/deep-rl-tensorflow
- https://github.com/ShangtongZhang/reinforcement-learning-an-introduction
- GitHub - songrotek/DeepTerrainRL: terrain-adaptive locomotion skills using deep reinforcement learning
- GitHub - songrotek/async-rl: An attempt to reproduce the results of "Asynchronous Methods for Deep Reinforcement Learning" (http://arxiv.org/abs/1602.01783)
- GitHub - songrotek/rllab: rllab is a framework for developing and evaluating reinforcement learning algorithms.
- GitHub - songrotek/DRL-FlappyBird: Playing Flappy Bird Using Deep Reinforcement Learning (Based on Deep Q Learning DQN using Tensorflow)
- GitHub - songrotek/DeepMind-Atari-Deep-Q-Learner: The original code from the DeepMind article + my tweaks
【资料总结】| Deep Reinforcement Learning 深度强化学习的更多相关文章
- temporal credit assignment in reinforcement learning 【强化学习 经典论文】
Sutton 出版论文的主页: http://incompleteideas.net/publications.html Phd 论文: temporal credit assignment i ...
- Deep Reinforcement Learning
Reinforcement-Learning-Introduction-Adaptive-Computation http://incompleteideas.net/book/bookdraft20 ...
- Learning Roadmap of Deep Reinforcement Learning
1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman ...
- 深度学习国外课程资料(Deep Learning for Self-Driving Cars)+(Deep Reinforcement Learning and Control )
MIT(Deep Learning for Self-Driving Cars) CMU(Deep Reinforcement Learning and Control ) 参考网址: 1 Deep ...
- 深度强化学习(Deep Reinforcement Learning)入门:RL base & DQN-DDPG-A3C introduction
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应 ...
- 深度强化学习:入门(Deep Reinforcement Learning: Scratching the surface)
RL的方案 两个主要对象:Agent和Environment Agent观察Environment,做出Action,这个Action会对Environment造成一定影响和改变,继而Agent会从新 ...
- 《DRN: A Deep Reinforcement Learning Framework for News Recommendation》强化学习推荐系统
摘要 新闻推荐系统中,新闻具有很强的动态特征(dynamic nature of news features),目前一些模型已经考虑到了动态特征. 一:他们只处理了当前的奖励(ctr);. 二:有一些 ...
- 深度学习课程笔记(十八)Deep Reinforcement Learning - Part 1 (17/11/27) Lectured by Yun-Nung Chen @ NTU CSIE
深度学习课程笔记(十八)Deep Reinforcement Learning - Part 1 (17/11/27) Lectured by Yun-Nung Chen @ NTU CSIE 201 ...
- 深度强化学习资料(视频+PPT+PDF下载)
https://blog.csdn.net/Mbx8X9u/article/details/80780459 课程主页:http://rll.berkeley.edu/deeprlcourse/ 所有 ...
随机推荐
- 正则表达式(Regular expressions)使用笔记
Regular expressions are a powerful language for matching text patterns. This page gives a basic intr ...
- MySQL-5.6.36-部署安装(编译版)
1.系统环境(本站使用centos6.8_x64) [root@centos ~]# cat /etc/redhat-release CentOS release 6.8 (Final) 2.yum安 ...
- 【实战小项目】python开发自动化运维工具--批量操作主机
有很多开源自动化运维工具都很好用如ansible/salt stack等,完全不用重复造轮子.只不过,很多运维同学学习Python之后,苦于没小项目训练.本篇就演示用Python写一个批量操作主机的工 ...
- [译] 理解 LSTM 网络
原文链接:http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 吴恩达版:http://www.ai-start.com/dl2017/h ...
- Python练习:哥德巴赫猜想
哥德巴赫猜想 哥德巴赫 1742 年给欧拉的信中哥德巴赫提出了以下猜想:任一大于 2 的偶数都可写成两个质数之和.但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死 ...
- KnockoutJS知识规整目录
对于Web开发来讲,前端接触是避免不了的,特别是对于中小公司,没有严格的职位区分,前后端人员互相身兼是常有的事情,使用一些好的框架,能够帮助我们快速开发并完成需要的功能,对于前端的JS框架来讲MVVM ...
- 19,CSS 滤镜
1.Filter 属性介绍 2.Alpha 滤镜的使用 3.Blur 滤镜的使用 4.Filph.Filpv 滤镜 5.DropShadow 滤镜 6.Glow 滤镜 7.Gray ,Invert,X ...
- Android之日志管理(Log)
##文章大纲一.为什么要使用日志管理工具二.日志管理工具实战三.项目源码下载 ##一.为什么要使用日志管理工具###1. 对IT安全至关重要 当您使用强大的日志管理软件自动触发以保护您的系统时,您已 ...
- TOTP 介绍及基于C#的简单实现
TOTP 介绍及基于C#的简单实现 Intro TOTP 是基于时间的一次性密码生成算法,它由 RFC 6238 定义.和基于事件的一次性密码生成算法不同 HOTP,TOTP 是基于时间的,它和 HO ...
- JDBC:SqlServer连接TCP/IP连接失败,到主机 的 TCP/IP 连接失败。报错信息:com.microsoft.sqlserver.jdbc.SQLServerException: 到主机 的 TCP/IP 连接失败。
作者QQ:1161493927,欢迎互相交流学习. 报错信息:com.microsoft.sqlserver.jdbc.SQLServerException: 到主机 的 TCP/IP 连接失败. j ...