【资料总结】| Deep Reinforcement Learning 深度强化学习
- 《深度强化学习》英文版(150页),是上一版(70页)的加强版:https://arxiv.org/abs/1810.06339
- 经典书籍:Reinforcement Learning: An Introduction (2nd Edition)
- 论文集,覆盖面比较广,需要一定基础:Reinforcement Learning: State-of-the-Art
- 两个非常全的论文资料集合:
- yuxili: https://medium.com/@yuxili
- Guest Post (Part I): Demystifying Deep Reinforcement Learning
- Guest Post (Part II): Deep Reinforcement Learning with Neon
- Blog Post (Part III): Deep Reinforcement Learning with OpenAI Gym
- Andrej Karpathy blog: Deep Reinforcement Learning: Pong from Pixels
- 南京大学俞杨博士:强化学习前言(强化学习的完整介绍)https://www.leiphone.com/news/201705/uO8nd09EnR77NBRP.html
- 零基础入门:莫烦python:https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/
- David Silver的增强学习课程(有视频和ppt),2015年的,需要一定基础: http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
- 最好的增强学习教材,可以结合David Silver的课程一起看:Sutton & Barto Book: Reinforcement Learning: An Introduction
- 斯坦福CS234:http://web.stanford.edu/class/cs234/index.html
- 伯克利CS294:http://rll.berkeley.edu/deeprlcourse/
- Pieter Abbeel 的AI课程(包含增强学习,使用Pacman实验):Artificial Intelligence
- Pieter Abbeel 的深度增强学习课程:CS 294 Deep Reinforcement Learning, Fall 2015
- Nando de Freitas的深度学习课程 (有视频有ppt有作业):Machine Learning
- Michael Littman的增强学习课程:https://www.udacity.com/course/reinforcement-learning–ud600
- 最新机器人专题课程Penn(2016年开课):Specialization
- Deep Learning Summer School:pptsvideos
- openAI GYM Reinforcement Learning toolkits: https://gym.openai.com
- 强化学习示例演示:https://qqiang00.github.io/reinforce/javascript/demo_iteration.html
- karpathy的各种强化学习的演示:https://cs.stanford.edu/people/karpathy/reinforcejs/index.html
- MIT的强化学习在线学习网站:http://web.mst.edu/~gosavia/rl_website.html
- Awesome-RL: https://github.com/aikorea/awesome-rl
- Flappybird:https://github.com/yenchenlin/DeepLearningFlappyBird
- Deep Reinforcement Learning in Tensorflow:https://github.com/carpedm20/deep-rl-tensorflow
- https://github.com/ShangtongZhang/reinforcement-learning-an-introduction
- GitHub - songrotek/DeepTerrainRL: terrain-adaptive locomotion skills using deep reinforcement learning
- GitHub - songrotek/async-rl: An attempt to reproduce the results of "Asynchronous Methods for Deep Reinforcement Learning" (http://arxiv.org/abs/1602.01783)
- GitHub - songrotek/rllab: rllab is a framework for developing and evaluating reinforcement learning algorithms.
- GitHub - songrotek/DRL-FlappyBird: Playing Flappy Bird Using Deep Reinforcement Learning (Based on Deep Q Learning DQN using Tensorflow)
- GitHub - songrotek/DeepMind-Atari-Deep-Q-Learner: The original code from the DeepMind article + my tweaks
【资料总结】| Deep Reinforcement Learning 深度强化学习的更多相关文章
- temporal credit assignment in reinforcement learning 【强化学习 经典论文】
Sutton 出版论文的主页: http://incompleteideas.net/publications.html Phd 论文: temporal credit assignment i ...
- Deep Reinforcement Learning
Reinforcement-Learning-Introduction-Adaptive-Computation http://incompleteideas.net/book/bookdraft20 ...
- Learning Roadmap of Deep Reinforcement Learning
1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman ...
- 深度学习国外课程资料(Deep Learning for Self-Driving Cars)+(Deep Reinforcement Learning and Control )
MIT(Deep Learning for Self-Driving Cars) CMU(Deep Reinforcement Learning and Control ) 参考网址: 1 Deep ...
- 深度强化学习(Deep Reinforcement Learning)入门:RL base & DQN-DDPG-A3C introduction
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应 ...
- 深度强化学习:入门(Deep Reinforcement Learning: Scratching the surface)
RL的方案 两个主要对象:Agent和Environment Agent观察Environment,做出Action,这个Action会对Environment造成一定影响和改变,继而Agent会从新 ...
- 《DRN: A Deep Reinforcement Learning Framework for News Recommendation》强化学习推荐系统
摘要 新闻推荐系统中,新闻具有很强的动态特征(dynamic nature of news features),目前一些模型已经考虑到了动态特征. 一:他们只处理了当前的奖励(ctr);. 二:有一些 ...
- 深度学习课程笔记(十八)Deep Reinforcement Learning - Part 1 (17/11/27) Lectured by Yun-Nung Chen @ NTU CSIE
深度学习课程笔记(十八)Deep Reinforcement Learning - Part 1 (17/11/27) Lectured by Yun-Nung Chen @ NTU CSIE 201 ...
- 深度强化学习资料(视频+PPT+PDF下载)
https://blog.csdn.net/Mbx8X9u/article/details/80780459 课程主页:http://rll.berkeley.edu/deeprlcourse/ 所有 ...
随机推荐
- privoxy自动请求转发到多个网络
有些时候我们需要通过不同的代理访问不同资源,比如某些ip或域名走本地网络,某些ip或域名走不可描述的代理等.当然这只是举个栗子! 我要解决的问题是:我的内网机器没有internet访问权限,但是我的应 ...
- 【实战小项目】python开发自动化运维工具--批量操作主机
有很多开源自动化运维工具都很好用如ansible/salt stack等,完全不用重复造轮子.只不过,很多运维同学学习Python之后,苦于没小项目训练.本篇就演示用Python写一个批量操作主机的工 ...
- XML错误信息Referenced file contains errors (http://www.springframework.org/schema/beans/spring-beans-4.0.xsd). For more information, right click on the message in the Problems View ...
错误信息:Referenced file contains errors (http://www.springframework.org/schema/beans/spring-beans-4.0.x ...
- Python集成开发环境
目录 为什么用IDE(了解) Pycharm(掌握) Jupyter(掌握) 为什么用IDE(了解) 到现在为止,我们也是写过代码的人啦,但你有没有发现,每次写代码要新建文件.写完保存时还要选择存放地 ...
- Java 运算符 % 和 /
/ 是除运算符, %是取模运算符 区别: / 是普通的除法运算,如果除数和被除数都是整数,则商是取整 %是求余数 private static void test() { System. / ); S ...
- WebView,我已经长大了,知道自己区分是否安全了!
一.前言 如果你在用 Android 原生系统(Google Play 服务),在使用 WebView 加载某些网页时,一定遇到过以下的安全警告红屏. 这是 WebView 的安全浏览保护策略,在 A ...
- javaScript设计模式之----工厂模式
什么是工厂模式?我们通过一个例子了解一下: 比如我们想要弹出几个字符串 function funA(){ alert('a'); } function funB(){ alert('b'); } fu ...
- Python 中的设计模式详解之:策略模式
虽然设计模式与语言无关,但这并不意味着每一个模式都能在每一门语言中使用.<设计模式:可复用面向对象软件的基础>一书中有 23 个模式,其中有 16 个在动态语言中“不见了,或者简化了”. ...
- Go:学习笔记兼吐槽(3)
Go:学习笔记兼吐槽(1) Go:学习笔记兼吐槽(2) Go:学习笔记兼吐槽(3) 数组 Golang 中,数组是值类型. 数组的声明 var arr [10]int 数组的初始化 var arr1 ...
- 微服务框架surging学习之路——序列化
1.对微服务的理解 之前看到在群里的朋友门都在讨论微服务,看到他们的讨论,我也有了一些自己的理解,所谓微服务就是系统里的每个服务都 可以自由组合.自由组合这个就很厉害了,这样一来,每个服务与服务之间基 ...