转载自https://blog.csdn.net/victoriaw/article/details/78497316

核心:测地线距离(dijstra最短路径获得)、MDS降维

Isomap(Isometric Feature Mapping)是流行学习的一种,用于非线性数据降维,是一种无监督算法。

它所采用的核心算法和MDS是一致的,区别在于原始空间中的距离矩阵的计算上。很多数据是非线性结构,不适合直接采用PCA算法和MDS算法。在非线性数据结构中,流形上距离很远(测地线距离)的两个数据点,在高维空间中的距离(欧式距离)可能非常近,如下图所示:

只有测地线距离才反映了流形的真实低维几何结构。Isomap建立在MDS的基础上,保留的是非线性数据的本质几何结构,即任意点对之间的测地线距离。

现在的问题是怎么根据输入空间距离信息估计测地线距离?对于邻居数据点,其输入空间距离可以很好地近似测地线距离。在每个数据点和其邻居点之间添加加权边,得到一个连接图。距离较远的数据点之间的测地线距离可以通过最短路径距离近似。

Isomap算法总共分为三步。首先,为每个数据点确定邻居,有两种方式,一种是把最近的kk个作为邻居,一种是把半径ϵϵ内的所有点作为邻居。可以得到加权图,边上的权重表示两点之间的输入空间距离dX(i,j)dX(i,j)。

然后,对任意两个点对,计算最短路径距离dG(i,j)dG(i,j)作为测地线距离的估计。可以采用Dijkstra算法计算最短路径。

最后,把根据最短路径确定的距离矩阵DGDG作为MDS算法的输入,得到低维空间中最好地保留流形的本质结构的数据表示。

在计算近邻时,如果邻域范围指定得较大,那么距离较远的点可能被认为是近邻,造成“短路”问题;如果邻域范围指定的小,那么图中某些区域可能和其他区域不连通,出现“断路”问题。短路或者断路都会给后面计算最短路径造成误导。

MDS降维

1、https://blog.csdn.net/zwlq1314521/article/details/59483232?locationNum=8&fps=1

ISOMAP和MDS降维的更多相关文章

  1. 吴裕雄 python 机器学习——多维缩放降维MDS模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  2. ISOMAP

    转载 https://blog.csdn.net/dark_scope/article/details/53229427# 维度打击,机器学习中的降维算法:ISOMAP & MDS 降维是机器 ...

  3. 机器学习 降维算法: isomap & MDS

    最近在看论文的时候看到论文中使用isomap算法把3D的人脸project到一个2D的image上.提到降维,我的第一反应就是PCA,然而PCA是典型的线性降维,无法较好的对非线性结构降维.ISOMA ...

  4. 机器学习中的降维算法:ISOMAP & MDS

    参见:https://blog.csdn.net/Dark_Scope/article/details/53229427

  5. 降维算法整理--- PCA、KPCA、LDA、MDS、LLE 等

    转自github: https://github.com/heucoder/dimensionality_reduction_alo_codes 网上关于各种降维算法的资料参差不齐,同时大部分不提供源 ...

  6. 机器学习降维方法概括, LASSO参数缩减、主成分分析PCA、小波分析、线性判别LDA、拉普拉斯映射、深度学习SparseAutoEncoder、矩阵奇异值分解SVD、LLE局部线性嵌入、Isomap等距映射

    机器学习降维方法概括   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近 ...

  7. 数据降维之多维缩放MDS(Multiple Dimensional Scaling)

    网上看到关于数据降维的文章不少,介绍MDS的却极少,遂决定写一写. 考虑一个这样的问题.我们有n个样本,每个样本维度为m.我们的目标是用不同的新的k维向量(k<<m)替代原来的n个m维向量 ...

  8. 吴裕雄 python 机器学习——等度量映射Isomap降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  9. 流形学习之等距特征映射(Isomap)

    感觉是有很久没有回到博客园,发现自己辛苦写的博客都被别人不加转载的复制粘贴过去真的心塞,不过乐观如我,说明做了一点点东西,不至于太蠢,能帮人最好.回校做毕设,专心研究多流形学习方法,生出了考研的决心. ...

随机推荐

  1. C++11 (多线程)并发编程总结

    | 线程 std::thread 创建std::thread,一般会绑定一个底层的线程.若该thread还绑定好函数对象,则即刻将该函数运行于thread的底层线程. 线程相关的很多默认是move语义 ...

  2. Golang 语言的单元测试和性能测试(也叫 压力测试)

    Golang单元测试对文件名和方法名,参数都有很严格的要求. 例如: 1.文件名必须以xx_test.go命名 2.方法必须是Test[^a-z]开头(T必须大写),func TestXxx (t * ...

  3. kubernetes系列10—存储卷详解

    本文收录在容器技术学习系列文章总目录 1.认识存储卷 1.1 背景 默认情况下容器中的磁盘文件是非持久化的,容器中的磁盘的生命周期是短暂的,这就带来了一系列的问题:第一,当一个容器损坏之后,kubel ...

  4. SLAM+语音机器人DIY系列:(二)ROS入门——5.编写简单的消息发布器和订阅器

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  5. 浅谈SpringMVC执行过程

    通过深入分析Spring源码,我们知道Spring框架包括大致六大模块, 如Web模块,数据库访问技术模块,面向切面模块,基础设施模块,核心容器模块和模块, 其中,在Spring框架的Web模块中,又 ...

  6. Spring Cloud Alibaba基础教程:Sentinel使用Apollo存储规则

    上一篇我们介绍了如何通过Nacos的配置功能来存储限流规则.Apollo是国内用户非常多的配置中心,所以,今天我们继续说说Spring Cloud Alibaba Sentinel中如何将流控规则存储 ...

  7. EF Core 快速上手——EF Core的三种主要关系类型

    系列文章 EF Core 快速上手--EF Core 入门 本节导航 三种数据库关系类型建模 Migration方式创建和习修改数据库 定义和创建应用DbContext 将复杂查询拆分为子查询   本 ...

  8. 配置多版本jdk

    配置办法https://blog.csdn.net/qq342643414/article/details/78364601 可能会遇到的问题https://www.cnblogs.com/chuij ...

  9. 关于时间的那些事--PHP、JavaScript、MySQL操作时间

    PHP篇 PHP中时间操作单位是秒 一.将时间戳转为普通日期格式 //当前时间戳 time(); //当前时间格式 date("Y-m-d H:i:s",time()); //昨天 ...

  10. Django 列的自定义显示

    ModelAdmin 作用:对后台数据表的显示做自定义的设置(如果对django默认的显示模式感到满意则不需要定义modeladmin).我对默认的显示模式永远不满意! 定义modeladmin: f ...