期望\(DP\) 方法总结

这个题目太大了,变化也层出不穷,这里只是我的一点心得,不定期更新!

1. 递推式问题

对于无穷进行的操作期望步数问题,一般可用递推式解决。
对于一个问题\(ans[x]\),
我们可以考虑建立逻辑转移
\[ans[now] = Merge(\ \ Function(ans[now])\ ,\ Function(ans[other])\ \ )\]
那么我们进行移项后,
\[ans[now]\ Delete\ Function(ans[now])\ \ =\ \ Function(ans[other])\]
此时,分离了\(ans[now]\) 与\(ans[other]\), 那么就构成了递推关系
.
然后,对于递推式,巧用 顺序枚举 与 倒序枚举, 来防止除0、溢出等问题。
比较经典的就是POJ 2096 Collecting Bugs,它的原递推式:
\(f[i][j]*(sn-ij) = Function(f[i-1][j]\ ,\ f[i][j-1]\ ,\ f[i-1][j-1])\)
我们目标状态为\(f[s][n]\),那么当\(i=s\),\(j=n\)时就会出现除0的情况。
一个比较巧妙的处理,改变状态含义,把它变为倒序处理:
\(f[i][j]*(ns-ij) = Function(f[i+1][j]\ ,\ f[i][j+1]\ ,\ f[i+1][j+1])\)
然后\(f[s][n]=0\),目标状态变为\(f[0][0]\)从而避免了除0的问题。
.
例题:[SHOI2002]百事世界杯之旅POJ2096 Collecting Bugs

2. 错位相减

注意式子的特性,观察特定情况下是否可以直接算或者错位相减。
注意式子的次数是否等差,当下表值达到一定程度时是否存在特殊计算方法。
例如:
\(f[i]=f[i-1]p_b+p_a(f[i-1]+1)p_b+{p_a}^2(f[i-1]+2)p_b+....\)
那么有\(p_af[i] = p_afp_b + {p_a}^2(f[i-1]+1)p_b + {p_a}^3(f[i-1]+2)p_b+...\)
然后错位相减可得:
\((1-p_a)f[i] = p_b(f[i-1] + p_a + {p_a}^2 + {p_a}^3 + ....)\)
此时出现了等比数列,套等比数列求和即可。
一般错位相减后 各种数学公式套一波 就可以把无限变为有限 。
例题:CF908D Arbitrary Arrangement

3. 高斯消元

这个真的是套路了,大家应该都会。
对于一个\(DP\)方程式,
若所有的转移方程式都形如\(f(x) = Function_{i=1}^n f(i)\)
那么直接移项,然后把每一个转移方程式当作一个方程,高斯消元即可。
例题:[HNOI2013]游走[HNOI2011]XOR和路径

4. 步骤移动转移

当直接用所需状态设不出方程式的时候,考虑从当前状态移动一步的条件与概率
那么状态变为\(f[移动步数]\),
转移为\(f[step] ==(Function)==> f[step+1]\)
以这个角度思考,很有可能会出现递推式,然后套用上面所说就可解出最终答案。
例题:[六省联考2017]分手是祝愿

5. 整数期望公式

我们设答案(整数)为\(x\),期望答案为\(E(x)\) ,\(P(x \ge i)\)表示答案大于等于\(i\)的概率,那么有:
\[E(x) = \sum_{i = 1}^∞ P(x \ge i)\]
我们同时有:\(P(i \leq x-1) + P(i \ge x) = 1\)
第一个公式中的无限看起来很吓人,但根据实际意义可以变为有限(答案不可能大于最大上限)。
用这个公式可以将求解答案变为求解后缀和或者求解前缀和
那么就改变了\(DP\)目标,有时候就可以帮助我们设计出可以转移的状态,最后套公式得解即可。
例题:Luogu P3600 随机数生成器 (难度较大强行插入大佬的题解:戳我1戳我2)

期望$DP$ 方法总结的更多相关文章

  1. javaSE27天复习总结

    JAVA学习总结    2 第一天    2 1:计算机概述(了解)    2 (1)计算机    2 (2)计算机硬件    2 (3)计算机软件    2 (4)软件开发(理解)    2 (5) ...

  2. [DP优化方法之斜率DP]

    什么是斜率dp呢 大概就把一些单调的分组问题 从O(N^2)降到O(N) 具体的话我就不多说了 看论文: http://www.cnblogs.com/ka200812/archive/2012/08 ...

  3. 动态规划_基础_最长公共子序列_多种方法_递归/dp

    D: 魔法少女资格面试 题目描述 众所周知,魔法少女是一个低危高薪职业.随着近年来报考魔法少女的孩子们越来越多,魔法少女行业已经出现饱和现象!为了缓和魔法少女界的就业压力,魔法少女考核员丁丁妹决定增加 ...

  4. 多重集组合数 (DP)

    输入: n=3 m=3 a={1,2,3} M=10000 输出: 6  (0+0+3,0+1+2,0+2+1,1+0+2,1+1+1,1+2+0) 为了不重复计数,同一种类的物品最好一次性处理好.于 ...

  5. bzoj 3622 已经没有什么好害怕的了 类似容斥,dp

    3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1213  Solved: 576[Submit][Status][ ...

  6. [Swift]LeetCode639. 解码方法 2 | Decode Ways II

    A message containing letters from A-Z is being encoded to numbers using the following mapping way: ' ...

  7. 二:状压dp

    一:状压dp的基本特征 状态压缩问题一般是指用十进制的数来表示二进制下的状态 这种用一个数来表示一组数,以降低表示状态所需的维数的解题手段,就叫做状态压缩. 常用到位运算 二:位运算 &:与运 ...

  8. 62. Unique Paths (Graph; DP)

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  9. 96. Unique Binary Search Trees (Tree; DP)

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  10. lightoj 1381 - Scientific Experiment dp

    1381 - Scientific Experiment Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lightoj.com/vo ...

随机推荐

  1. 初探solr搜索

    solr是一个基于lucene的搜索引擎,lucene是一个全文检索引擎的架构.solr在此之上进行了封装完善,变成了一个很流行实用的搜索引擎,可以应对绝大部分的搜索需求.使用搜索引擎有以下几点好处: ...

  2. CentOS安装EPEL Remi

    EPEL,Remi 因为Centos官方源很多软件都没有,编译安装又比较麻烦,可以安装EPEL源Remi源解决此问题. CentOS 5.x : wget http://dl.fedoraprojec ...

  3. sql sever基本语法总结

    一.数据库导入表 1.先用sql语句创建相应的表,包括表的字段和字段类型 2.导入数据,选择相应的表名,不带'$'符号的表名 二.创建数据库 create datatable 数据库名 三.查看表里的 ...

  4. gitlab手动安装

    [博客园 淡水的天空]] 老版 新版 Omnibus package installation Manually

  5. table内容强制换行

    为防止文字过长而撑坏表格,一般我们需要通过css使td中内容强制换行.分别给table和td加一条样式即可实现: <meta charset="utf-8"> < ...

  6. .Net Core和jexus配置HTTPS服务

    花了几天时间,看了好多篇博客,终于搞定了网站的HTTPS服务,借此写篇博客,来让有需要的朋友少走弯路. 一.环境介绍 1.Linux下在Docker容器中部署好了一个网站,该网站需要通过外部提供程序访 ...

  7. easyui验证扩展

    问题描述: 如上所示:当用户添加信息时,必须保证一个队伍一天只能有一条数据.所以在选择了报表日期的时候必须查询数据库里面当前队伍这一天的数据是否存在.如果不存在,即当前日期队伍没有数据,就可以进行数据 ...

  8. Sql Server 常用事务处理总结

    在数据库操作中,常用事务写法: 1. 通过 @@error 判断一批sql 执行完毕,是否有异常.  @@error 为系统变量,每次执行完 sql 都会返回一个数值,  0 表示 执行成功 ,非0 ...

  9. MySQL数据库基础(MySQL5.7安装、配置)

      写在前面: MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,目前属于 Oracle 旗下产品.MySQL 是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQ ...

  10. 关于eclipse的mysql连接配置

    打开eclipse,选择Window→Open Perspective→Other→Database Development,然后在右边的导航栏右键点击Database Connections文件夹, ...