In the "100 game," two players take turns adding, to a running total, any integer from 1..10. The player who first causes the running total to reach or exceed 100 wins.

What if we change the game so that players cannot re-use integers?

For example, two players might take turns drawing from a common pool of numbers of 1..15 without replacement until they reach a total >= 100.

Given an integer maxChoosableInteger and another integer desiredTotal, determine if the first player to move can force a win, assuming both players play optimally.

You can always assume that maxChoosableInteger will not be larger than 20 and desiredTotal will not be larger than 300.

Example

Input:
maxChoosableInteger = 10
desiredTotal = 11 Output:
false Explanation:
No matter which integer the first player choose, the first player will lose.
The first player can choose an integer from 1 up to 10.
If the first player choose 1, the second player can only choose integers from 2 up to 10.
The second player will win by choosing 10 and get a total = 11, which is >= desiredTotal.
Same with other integers chosen by the first player, the second player will always win.

这道题给了我们一堆数字,然后两个人,每人每次选一个数字,看数字总数谁先到给定值,有点像之前那道 Nim Game,但是比那题难度大。我刚开始想肯定说用递归啊,结果写完发现 TLE 了,后来发现我们必须要优化效率,使用 HashMap 来记录已经计算过的结果。我们首先来看如果给定的数字范围大于等于目标值的话,直接返回 true。如果给定的数字总和小于目标值的话,说明谁也没法赢,返回 false。然后我们进入递归函数,首先我们查找当前情况是否在 HashMap 中存在,有的话直接返回即可。我们使用一个整型数按位来记录数组中的某个数字是否使用过,我们遍历所有数字,将该数字对应的 mask 算出来,如果其和 used 相与为0的话,说明该数字没有使用过,我们看如果此时的目标值小于等于当前数字,说明已经赢了,或者调用递归函数,如果返回 false,说明也是第一个人赢了。为啥呢,因为当前已经选过数字了,此时就该对第二个人调用递归函数,只有返回的结果是 false,我们才能赢,所以此时我们 true,并返回 true。如果遍历完所有数字,标记 false,并返回 false,参见代码如下:

class Solution {
public:
bool canIWin(int maxChoosableInteger, int desiredTotal) {
if (maxChoosableInteger >= desiredTotal) return true;
if (maxChoosableInteger * (maxChoosableInteger + ) / < desiredTotal) return false;
unordered_map<int, bool> m;
return canWin(maxChoosableInteger, desiredTotal, , m);
}
bool canWin(int length, int total, int used, unordered_map<int, bool>& m) {
if (m.count(used)) return m[used];
for (int i = ; i < length; ++i) {
int cur = ( << i);
if ((cur & used) == ) {
if (total <= i + || !canWin(length, total - (i + ), cur | used, m)) {
m[used] = true;
return true;
}
}
}
m[used] = false;
return false;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/464

类似题目:

Nim Game

Flip Game II

Guess Number Higher or Lower II

Predict the Winner

参考资料:

https://leetcode.com/problems/can-i-win/

https://leetcode.com/problems/can-i-win/discuss/95283/brute-force-and-memoization

https://leetcode.com/problems/can-i-win/discuss/95277/Java-solution-using-HashMap-with-detailed-explanation

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Can I Win 我能赢吗的更多相关文章

  1. [LeetCode] 464. Can I Win 我能赢吗

    In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...

  2. Leetcode: Can I Win

    In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...

  3. 464 Can I Win 我能赢吗

    详见:https://leetcode.com/problems/can-i-win/description/ C++: class Solution { public: bool canIWin(i ...

  4. python 练习 2

    #!/usr/bin/python # -*- coding: utf-8 -*- from random import shuffle class caigame: win=False flag=F ...

  5. D - Football (aka Soccer)

    Football the most popular sport in the world (americans insist to call it "Soccer", but we ...

  6. 某软件大赛C#版考题整理——【编程题】

    三.编程题(4小题共40.0分)程序及结果写入对应文框内 1. 孪生素数查找程序. 所谓孪生素数指的是间隔为2 的相邻素数,就像孪生兄弟.最小的孪生素数是(3, 5),在100 以内的孪生素数还有 ( ...

  7. Internet History, Technology and Security (Week3)

    Week3. Welcome to week 3! This is our fourth and final week of History where we make the connection ...

  8. 状态压缩 - LeetCode #464 Can I Win

    动态规划是一种top-down求解模式,关键在于分解和求解子问题,然后根据子问题的解不断向上递推,得出最终解 因此dp涉及到保存每个计算过的子问题的解,这样当遇到同样的子问题时就不用继续向下求解而直接 ...

  9. [Swift]LeetCode464. 我能赢吗 | Can I Win

    In the "100 game," two players take turns adding, to a running total, any integer from 1.. ...

随机推荐

  1. How to implement equals() and hashCode() methods in Java[reproduced]

    Part I:equals() (javadoc) must define an equivalence relation (it must be reflexive, symmetric, and ...

  2. 基于WebGL 的3D呈现A* Search Algorithm

    http://www.hightopo.com/demo/astar/astar.html 最近搞个游戏遇到最短路径的常规游戏问题,一时起兴基于HT for Web写了个A*算法的WebGL 3D呈现 ...

  3. C#组件系列——又一款Excel处理神器Spire.XLS,你值得拥有(二)

    前言:上篇 C#组件系列——又一款Excel处理神器Spire.XLS,你值得拥有 介绍了下组件的两个功能,说不上特色,但确实能解决我们项目中的一些实际问题,这两天继续研究了下这个组件,觉得有些功能用 ...

  4. PyQt4入门学习笔记(四)

    在PyQt4中的事件和信号 事件 所有的GUI应用都是事件驱动的.事件主要是来自于应用的使用者,但是像互联网连接,窗口管理器或者计时器也可以产生事件.当我们调用应用的exec_()方法时,应用就进入了 ...

  5. IIS 如何设置多个Access-Control-Allow-Origin

    1,跨域请求ajax,可以增加请求Header,动态添加 System.Collections.Generic.List<string> lHost = new System.Collec ...

  6. 在DevExpress程序中使用SplashScreenManager控件实现启动闪屏和等待信息窗口

    在我很早的WInform随笔<WinForm界面开发之"SplashScreen控件">有介绍如何使用闪屏的处理操作,不过那种是普通WInform和DevExpress ...

  7. C#开机自动启动程序代码

    新建一个winform拖一个checkbox进来.. 然后设置它的changed事件. 已经测试过,可以直接复制使用. private void checkBox1_CheckedChanged(ob ...

  8. AutoResetEvent ManualResetEvent WaitOne使用注意事项

    公司还用这些老家伙没办法,用了几次这俩.每次用都要重新翻一下A片. 好好的A片楞是翻译成了禅经.把这东西弄成个玄学.微软也是吃枣药丸.参考了@风中灵药的blog.写的牛逼. 还有一些公司用到的风中灵药 ...

  9. JDK动态代理实现原理

    之前虽然会用JDK的动态代理,但是有些问题却一直没有搞明白.比如说:InvocationHandler的invoke方法是由谁来调用的,代理对象是怎么生成的.直到看了他的文章才彻底明白,附网址:htt ...

  10. 解决 Tomcat Server in Eclipse unable to start within 45 seconds 不能启动的问题

    1.在 Eclipse 下方  Servers TAB页,双击 "Tomcat 7.0 at localhost": 2.在右上角处点开 Timeouts 的设定,修改Start( ...