BZOJ_1833_[ZJOI2010]count 数字计数_数位DP
BZOJ_1833_[ZJOI2010]count 数字计数_数位DP
题意:
给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。
分析:
数位DP
f[i][j][k]表示i位数,以j开头的数中k出现的次数
预处理出来10的幂(在数位DP中经常会用到)
f[i][j][k]+=f[i-1][l][k]+(j==k)*10^i
之后按位枚举,0的情况特殊处理
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define LL long long
LL f[15][11][11],a,b,mi[15];
void init(){
mi[1]=1;
for(int i=2;i<=13;i++){
mi[i]=mi[i-1]*10;
}
for(int i=0;i<=9;i++){
f[1][i][i]=1;
}
for(int i=2;i<=13;i++){
for(int j=0;j<=9;j++){
for(int k=0;k<=9;k++){
for(int l=0;l<=9;l++){
f[i][j][k]+=f[i-1][l][k];
if(j==k)f[i][j][k]+=mi[i-1];
}
}
}
}
}
LL calc(LL x,int p){
if(!x)return (!p);
LL re=0;
int d=13;
while(mi[d]>x)d--;
//d++;
for(int i=1;i<d;i++){
for(int j=1;j<=9;j++){
re+=f[i][j][p];
}
}
if(!p)re++;
int cur=x/mi[d];
for(int i=1;i<cur;i++){
re+=f[d][i][p];
}
x%=mi[d];
if(cur==p)re+=x+1;
for(int i=d-1;i;i--){
cur=x/mi[i];
for(int j=0;j<cur;j++){
re+=f[i][j][p];
}
x%=mi[i];
if(cur==p)re+=x+1;
}
return re;
}
int main(){
scanf("%lld%lld",&a,&b);
init();
int flg=0;
for(int i=0;i<=9;i++){
if(!flg)flg=
printf("%lld",calc(b,i)-calc(a-1,i));
else printf(" %lld",calc(b,i)-calc(a-1,i));
}
}
BZOJ_1833_[ZJOI2010]count 数字计数_数位DP的更多相关文章
- BZOJ1833 ZJOI2010 count 数字计数 【数位DP】
BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...
- 【BZOJ】1833: [ZJOI2010] count 数字计数(数位dp)
题目 传送门:QWQ 分析 蒟蒻不会数位dp,又是现学的 用$ dp[i][j][k] $ 表示表示长度为i开头j的所有数字中k的个数 然后预处理出这个数组,再计算答案 代码 #include < ...
- 【BZOJ1833】[ZJOI2010] count 数字计数(数位DP)
点此看题面 大致题意: 求在给定的两个正整数\(a\)和\(b\)中的所有整数中,\(0\sim9\)各出现了多少次. 数位\(DP\) 很显然,这是一道数位\(DP\)题. 我们可以用前缀和的思想, ...
- [BZOJ 1833] [ZJOI2010] count 数字计数 【数位DP】
题目链接:BZOJ - 1833 题目分析 数位DP .. 用 f[i][j][k] 表示第 i 位是 j 的 i 位数共有多少个数码 k . 然后差分询问...Get()中注意一下,如果固定了第 i ...
- bzoj 1833: [ZJOI2010]count 数字计数【数位dp】
非典型数位dp 先预处理出f[i][j][k]表示从后往前第i位为j时k的个数,然后把答案转换为ans(r)-ans(l-1),用预处理出的f数组dp出f即可(可能也不是dp吧--) #include ...
- bzoj 1833 [ZJOI2010]count 数字计数(数位DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1833 [题意] 统计[a,b]区间内各数位出现的次数. [思路] 设f[i][j][k ...
- BZOJ_1833_[ZJOI2010]_数字计数_(数位dp)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1833 统计\(a~b\)中数字\(0,1,2,...,9\)分别出现了多少次. 分析 数位dp ...
- bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)
1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...
- BZOJ 1833: [ZJOI2010]count 数字计数( dp )
dp(i, j, k)表示共i位, 最高位是j, 数字k出现次数. 预处理出来. 差分答案, 对于0~x的答案, 从低位到高位进行讨论 -------------------------------- ...
随机推荐
- MySQL中的行级锁,表级锁,页级锁
在计算机科学中,锁是在执行多线程时用于强行限制资源访问的同步机制,即用于在并发控制中保证对互斥要求的满足. 在数据库的锁机制中介绍过,在DBMS中,可以按照锁的粒度把数据库锁分为行级锁(INNODB引 ...
- 手动编译Flume
1.源码下载: 我用的是1.6版,因为加了kafka-sink,下载地址 http://www.apache.org/dyn/closer.cgi/flume/1.6.0/apache-flume-1 ...
- C#中的var和dynamic
在理解var和dynamic关键字之前,让我们先了解一下编程语言的类别. C#中有两类编程语言: 静态类型语言类别 动态语言类别 静态类型语言 静态类型语言也被称为强类型语言.所谓强类型语言,通俗的讲 ...
- python编码详解--转自(Alex的博客)
原文地址:http://www.cnblogs.com/alex3714/articles/7550940.html 编码回顾 在备编码相关的课件时,在知乎上看到一段关于Python编码的回答 这哥们 ...
- 布局 android
1.线性布局 LinearLayout又称作线性布局,是一种非常常用的布局.通过android:orientation属性指定了排列方向是vertical还是horizontal. 如果LinearL ...
- orderBy新写法
通常,我们处理排序规则的处理方法是在sql 语句中order by create_time desc, 但是这时我们需要从控制器中一步步找到该方法,操作多. 我们试着将业务逻辑拆分到控制器 中, 把排 ...
- SVD的概念以及应用
第十四章 利用SVD简化数据 一.引言 SVD的全称是奇异值分解,SVD的作用是它能够将高维的数据空间映射到低维的数据空间,实现数据约减和去除噪声的功能. SVD的特点主要有以下几个方面: 1.它的优 ...
- Visual Studio 和 c# 正则表达式
今天集中说说VS生产环境下的正则. Visual Sturdio 2012以上版本查找替换 对于VS的正则,准确说,是VS2012之后的IDE下VS的正则. VS的查找和替换功能支持基础的正则表达式, ...
- hadoop HA 详解
NameNode 高可用整体架构概述 在 Hadoop 1.0 时代,Hadoop 的两大核心组件 HDFS NameNode 和 JobTracker 都存在着单点问题,这其中以 NameNode ...
- Python 基础【二】 下
str()的方法 字符串练习 1.str.capitalize str.capitalize #返回首字母大写,其他字母小写的字符串 >>> a = 'gwdsr' >> ...