CF泛做
CF Rd478 Div2 A Aramic script
题意:给定几个字符串,去重后,求种类
思路:直接map乱搞
#include<bits/stdc++.h>
using namespace std;
string b;
bool vis[100005];
map<string, int> M;
int main() {
int n; scanf("%d", &n);
int ans = 0;
while(n--) {
memset(vis, 0, sizeof vis);
string a;
cin >> a;
b.clear();
int len = a.size();
sort(a.begin(), a.end());
for (int i = 0; i < len; ++i) {
if(a[i] == a[i + 1]) vis[i] = true;
}
for (int i = 0; i < len; ++i) {
if(!vis[i]) b += a[i];
}
if(!M[b]) {
ans++;
M[b] = true;
}
} printf("%d\n", ans);
}
CF Rd482 Div2 A Pizza, Pizza, Pizza!!!
题意:一个披萨,要切成n个同样的块,求最小刀数
思路:偶数直接除以2,奇数直接输出
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll N;
int main() {
scanf("%lld", &N);
if(N == 0) printf("0\n");
else if((N + 1) & 1) printf("%lld\n", N + 1);
else printf("%lld\n", (N + 1) / 2);
return 0;
}
CF Rd482 Div2 B Treasure Hunt
题意:三个字符串,给定n轮,每轮必须改变一个字符,问最后重复的单个字符最多的字符串是哪个
思路:每次改变出现次数最多的就好
#include<bits/stdc++.h>
using namespace std;
const int maxn = 3005;
int n;
string a, b, c;
int num[maxn];
int calc(string a) {
memset(num, 0, sizeof num);
int now = 0;
int len = a.size();
for (int i = 0; i < len; ++i) {
num[a[i]]++;
}
for (int i = 0; i <= 300; ++i) {
if(num[i] > now) now = num[i];
}
if(now == a.size()) return now - (n == 1);
else return min(now + n, len);
}
int main() {
cin >> n;
cin >> a; cin >> b; cin >> c;
int ans1 = calc(a);
int ans2 = calc(b);
int ans3 = calc(c);
if(ans1 > ans2 && ans1 > ans3) printf("Kuro\n");
else if(ans2 > ans1 && ans2 > ans3) printf("Shiro\n");
else if(ans3 > ans1 && ans3 > ans2) printf("Katie\n");
else printf("Draw");
return 0;
}
CF Rd482 Div2 C Kuro and Walking Route
题意:给定一颗树,给定x,y求不依次经过x -- y的路径对数为多少
思路:首先,全部点对数为n * (n - 1),dfs求出每个点的子节点个数,则y的子节点与x上面的节点组成的路径对数需要减去
即为n * (n - 1) - son[y] * (n - son[x])
#include<bits/stdc++.h>
using namespace std;
const int maxn = 3 * 100005;
int head[maxn << 1], cnt = 1;
int n, x, y;
struct Node{
int v, nxt;
} G[maxn << 1];
bool vis[maxn << 1];
int f[maxn << 1], siz[maxn << 1];
typedef long long ll;
void insert(int u, int v) {
G[cnt] = (Node) {v, head[u]}; head[u] = cnt++;
}
void dfs(int x, int fa) {
f[x] = fa; siz[x] = 1;
for (int i = head[x]; i; i = G[i].nxt) {
int v = G[i].v;
if(v == fa) continue;
dfs(v, x);
siz[x] += siz[v];
}
}
int main() {
scanf("%d%d%d", &n, &x, &y);
for (int i = 1; i <= n - 1; ++i) {
int a, b; scanf("%d%d", &a, &b);
insert(a, b); insert(b, a);
} dfs(x, 0);
int z = y;
while(f[z] != x) z = f[z];
ll ans = (ll)n * (ll)(n - 1) - (ll)(n - siz[z]) * (ll)siz[y];
printf("%lld\n", ans);
return 0;
}
CF Rd480 Div2 E The Number Games
题意:给定一棵树,节点i有权值2^i,求删除k个点后,剩下的点需要联通,并且还要使剩下的点的权值和最大
思路:首先有个贪心思想,2^i比sum(2^1 + 2^2 + ......2^(i - 1))还要大,因此想到要保留大的,首先最大的点肯定要保留,
然后以这个点为根,将点号从大到小枚举,依次检查每个点是否满足题意(加入的点不超过n - k)
CF泛做的更多相关文章
- codeforces泛做..
前面说点什么.. 为了完成日常积累,傻逼呵呵的我决定来一发codeforces 挑水题 泛做.. 嗯对,就是泛做.. 主要就是把codeforces Div.1的ABCD都尝试一下吧0.0.. 挖坑0 ...
- 学记笔记 $\times$ 巩固 · 期望泛做$Junior$
最近泛做了期望的相关题目,大概\(Luogu\)上提供的比较简单的题都做了吧\(233\) 好吧其实是好几天之前做的了,不过因为太颓废一直没有整理-- \(Task1\) 期望的定义 在概率论和统计学 ...
- bzoj 泛做
3003 这个题是这样的,对序列差分后,每个取反操作就是给两个端点的值取反,然后背包之后再状压就好了 4128 这题棒棒的QAQBSGS 23333 4176 这个杜教筛呃呃呃大爷链接 3028 我要 ...
- 历年NOIP水题泛做
快noip了就乱做一下历年的noip题目咯.. noip2014 飞扬的小鸟 其实这道题并不是很难,但是就有点难搞 听说男神错了一个小时.. 就是$f_{i,j}$表示在第$i$个位置高度为$j$的时 ...
- HAOI2015 泛做
T1 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的 ...
- LCT裸题泛做
①洞穴勘测 bzoj2049 题意:由若干个操作,每次加入/删除两点间的一条边,询问某两点是否连通.保证任意时刻图都是一个森林.(两点之间至多只有一条路径) 这就是个link+cut+find roo ...
- 基尔霍夫矩阵题目泛做(AD第二轮)
题目1: SPOJ 2832 题目大意: 求一个矩阵行列式模一个数P后的值.p不一定是质数. 算法讨论: 因为有除法而且p不一定是质数,不一定有逆元,所以我们用辗转相除法. #include < ...
- 后缀自动机/回文自动机/AC自动机/序列自动机----各种自动机(自冻鸡) 题目泛做
题目1 BZOJ 3676 APIO2014 回文串 算法讨论: cnt表示回文自动机上每个结点回文串出现的次数.这是回文自动机的定义考查题. #include <cstdlib> #in ...
- FFT与多项式、生成函数题目泛做
题目1 COGS 很强的乘法问题 高精度乘法用FFT加速 #include <cstdlib> #include <iostream> #include <algorit ...
随机推荐
- 《java入门第一季》之面向对象(一个易错面试题)
这个面试题有点难度,有一些饶.不明白可以在下面讨论.还是值得搞懂的. / * 看程序写结果: A:成员变量的问题 int x = 10; //成员变量x是基本类型 Student s = new St ...
- Linux下xargs命令详解
http://www.cnblogs.com/perfy/archive/2012/07/24/2606101.html xargs是给命令传递参数的一个过滤器,也是组合多个命令的一个工具.它把一个数 ...
- linux服务搭建----ftp与ftp yum源搭建
ftp服务 如果没有ftp yum -y install vsftpd (前提是你在有yum源的情况下才可以使用这条命令) service vsftpd resta ...
- IOS动画(Core Animation)总结 (参考多方文章)
一.简介 iOS 动画主要是指Core Animation框架.官方使用文档地址为:Core Animation Guide. Core Animation是IOS和OS X平台上负责图形渲染与动画的 ...
- Leetcode_252_Implement Stack using Queues
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/48598773 Implement the followin ...
- IOS中UITextView(多行文本框)控件的简单用法
1.创建并初始化 UITextView文本视图相比与UITextField直观的区别就是UITextView可以输入多行文字并且可以滚动显示浏览全文.UITextField的用处多,UITextVie ...
- IOS9关于搜索的认识和实现
原文链接 : iOS 9 App Search Tutorial: Introduction to App Search 原文作者 : Chris Wagner 译文出自 : 开发技术前线 www.d ...
- LeetCode(53)-Binary Tree Paths
题目: Given a binary tree, return all root-to-leaf paths. For example, given the following binary tree ...
- javascript语言扩展:可迭代对象(3)
除了前2篇文章中描述的可迭代对象以外,在js语言扩展中的生成器对象,也可以作为可迭代对象. 这里用到一个新的关键字yield,该关键字在函数内部使用,用法和return类似,返回函数中的一个值:yie ...
- Eclipse 3.5 以后安装插件很慢的解决办法
1 .除非你需要,否则不要选择"联接到所有更新站点" 在安装对话框里有一个小复选框,其标示为"在安装过程中联接到所有更新站点从而找到所需的软件."从表面上看,这 ...