TimeQuest 静态时序分析 基本概论
静态时序分析 基本概念
1. 背景
静态时序分析的前提就是设计者先提出要求,然后时序分析工具才会根据特定的时序模型进行分析,给出正确是时序报告。
进行静态时序分析,主要目的就是为了提高系统工作主频以及增加系统的稳定性。对很多数字电路设计来说,提高工作频率非常重要,因为高工作频率意味着高处理能力。通过附加约束可以控制逻辑的综合、映射、布局和布线,以减小逻辑和布线延时,从而提高工作频率。
2. 理论分析
2.1 固定参数launch edge、latch edge、Tsu、Th、Tco概念
2.1.1 launch edge
时序分析起点(launch edge):第一级寄存器数据变化的时钟边沿,也是静态时序分析的起点。
2.1.2 latch edge
时序分析终点(latch edge):数据锁存的时钟边沿,也是静态时序分析的终点。
2.1.3 Clock Setup Time (Tsu)
建立时间(Tsu):是指在时钟沿到来之前数据从不稳定到稳定所需的时间,如果建立的时间不满足要求那么数据将不能在这个时钟上升沿被稳定的打入触发器。如图3.2所示:

图3.2 建立时间图解
2.1.4 Clock Hold Time (Th)
保持时间(Th):是指数据稳定后保持的时间,如果保持时间不满足要求那么数据同样也不能被稳定的打入触发器。保持时间示意图如图3.3所示:

图3.3 保持时间图解
2.1.5 Clock-to-Output Delay(tco)
数据输出延时(Tco):这个时间指的是当时钟有效沿变化后,数据从输入端到输出端的最小时间间隔。
2.2 Clock skew
时钟偏斜(clock skew):是指一个时钟源到达两个不同寄存器时钟端的时间偏移,如图3.4所示:

图3.4 时钟偏斜
时钟偏斜计算公式如下:
Tskew = Tclk2 - Tclk1 (公式2-1)
2.2 Data Arrival Time
数据到达时间(Data Arrival Time):输入数据在有效时钟沿后到达所需要的时间。主要分为三部分:时钟到达寄存器时间(Tclk1),寄存器输出延时(Tco)和数据传输延时(Tdata),如图3.5所示

图3.5 数据到达时间
数据到达时间计算公式如下:
Data Arrival Time = Launch edge + Tclk1 +Tco + Tdata (公式2-2)
2.3 Clock Arrival Time
时钟到达时间(Clock Arrival Time):时钟从latch边沿到达锁存寄存器时钟输入端所消耗的时间为时钟到达时间,如图3.6所示

图3.6 时钟到达时间
时钟到达时间计算公式如下:
Clock Arrival Time = Lacth edge + Tclk2 (公式2-3)
2.4 Data Required Time(setup/hold)
数据需求时间(Data Required Time):在时钟锁存的建立时间和保持时间之间数据必须稳定,从源时钟起点达到这种稳定状态需要的时间即为数据需求时间。如图3.7所示:

图3.7 数据需求时间
(建立)数据需求时间计算公式如下:
Data Required Time = Clock Arrival Time - Tsu (公式2-4)
(保持)数据需求时间计算公式如下:
Data Required Time = Clock Arrival Time + Th (公式2-5)
2.5 Setup slack
建立时间余量(setup slack):当数据需求时间大于数据到达时间时,就说时间有余量,Slack是表示设计是否满足时序的一个称谓。

图3.8 建立时间余量
如图3.8所示,建立时间余量的计算公式如下:
Setup slack = Data Required Time - Data Arrival Time (公式2-6)
由公式可知,正的slack表示数据需求时间大于数据到达时间,满足时序(时序的余量),负的slack表示数据需求时间小于数据到达时间,不满足时序(时序的欠缺量)。
3.1.7 时钟最小周期
时钟最小周期:系统时钟能运行的最高频率。
1. 当数据需求时间大于数据到达时间时,时钟具有余量;
2. 当数据需求时间小于数据到达时间时,不满足时序要求,寄存器经历亚稳态或者不能正确获得数据;
3. 当数据需求时间等于数据到达时间时,这是最小时钟运行频率,刚好满足时序。
从以上三点可以得出最小时钟周期为数据到达时间等于数据需求时间,的运算公式如下:
Data Required Time = Data Arrival Time
图解Setup 与 Hold Slack


从上面两个图中可以清晰的看出Setup与Hold Slack的定义与计算方法:
Setup slack=latch edge+Tclk2-Tsu-(launch edge+Tclk1+Tco+Tdata)
=(latch edge-lanuch edge)+(Tclk2-Tclk1)-(Tsu+Tco+Tdata)
对于工具默认的单周期来说,latch edge-lanuch edge=T,如果不考虑时钟的skew,Tclk2-Tclk1=0,上式可以表达成:
Setup slack=T-(Tsu+Tco+Tdata),这就是为什么说源寄存器与目的寄存器之间延迟不能太长的原因,延迟越长,slack越小。
Hold slack=data arrival time – data required time
=(launch edge + Tclk1 + Tco + Tdata) – (latch edge + Tclk2 + Th)
=(launch edge – latch edge) – (Tclk2 – Tclk1) + (Tco + Tdata + Th)
注意,上式中的launch edge为next launch edge,即为latch edge,所以launch edge – latch edge=0,如果不考虑时钟的skew,Tclk2-Tclk1=0,上式可以表达成:
Hold slack=Tco + Tdata – Th,这就是为什么说源寄存器与目的寄存器之间延迟不能太短的原因,时间太短,slack越小。
setup slack 计算


hold slack 计算


TimeQuest 静态时序分析 基本概论的更多相关文章
- Timequest静态时序分析(STA)基础
Setup Slack Hold Slack Recovery&Removal Recovery: The minimum time an asynchronous signal must b ...
- 【黑金原创教程】【TimeQuest】【第一章】TimeQuest 静态时序分析模型的概念
声明:本文为黑金动力社区(http://www.heijin.org)原创教程,如需转载请注明出处,谢谢! 黑金动力社区2013年原创教程连载计划: http://www.cnblogs.com/ ...
- 静态时序分析(static timing analysis)
静态时序分析(static timing analysis,STA)会检测所有可能的路径来查找设计中是否存在时序违规(timing violation).但STA只会去分析合适的时序,而不去管逻辑操作 ...
- FPGA STA(静态时序分析)
1 FPGA设计过程中所遇到的路径有输入到触发器,触发器到触发器,触发器到输出,例如以下图所看到的: 这些路径与输入延时输出延时,建立和保持时序有关. 2. 应用背景 静态时序分析简称STA,它是一种 ...
- 静态时序分析基础STA
静态时序分析SAT 1. 背景 静态时序分析的前提就是设计者先提出要求,然后时序分析工具才会根据特定的时序模型进行分析,给出正确是时序报告. 进行静态时序分析,主要目的就是为了提高系统工作主频 ...
- FPGA基础知识8(FPGA静态时序分析)
任何学FPGA的人都跑不掉的一个问题就是进行静态时序分析.静态时序分析的公式,老实说很晦涩,而且总能看到不同的版本,内容又不那么一致,为了彻底解决这个问题,我研究了一天,终于找到了一种很简单的解读办法 ...
- FPGA静态时序分析基础
FPGA静态时序分析基础 基本概念 Skew: 时钟偏移 Skew表示时钟到达不同触发器的延时差别,Tskew = 时钟到达2号触发器的时刻 - 时钟到达1号触发器的时刻. Jitter: 时钟抖动 ...
- 静态时序分析SAT
1. 背景 静态时序分析的前提就是设计者先提出要求,然后时序分析工具才会根据特定的时序模型进行分析,给出正确是时序报告. 进行静态时序分析,主要目的就是为了提高系统工作主频以及增加系统的稳定性.对 ...
- 静态时序分析(static timing analysis) --- 时序路径
时序分析工具会找到且分析设计中的所有路径.每一个路径有一个起点(startpoint)和一个终点(endpoint).起点是设计中数据被时钟沿载入的那个时间点,而终点则是数据通过了组合逻辑被另一个时间 ...
随机推荐
- jquery 触发/失去焦点事件例子详解
触发焦点: $("Element").focus() 触发每一个匹配元素获得焦点事件. $("Element").focus(function) 事件会在获得焦 ...
- Unity3D中可中途释放的单例
Unity3D中可中途释放的单例 使用静态类,静态变量的坏处是从程序加载后就一直占用内存,想要释放比较麻烦,可是之前使用的单例,没有提供释放的方法,那是不是也同静态的一样直到程序结束菜释放?那单例的好 ...
- C#窗体无法接受Keydown事件
问题一描述:当新建一个窗体时,添加KeyDown事件后,会正常处理,但是当添加有控件时,比如Button,TextBox,不会触发窗体的KeyDown事件,也没有调用KeyDown事件的处理程序. 原 ...
- Varnish常用相关命令工具
varnishd启动./varnishd -f /usr/local/varnish-3.0.2/etc/varnish/default.vcl -s malloc,1G -T 127.0.0.1: ...
- php 队列
一.php中对共享内存,消息队列的操作 http://blog.csdn.net/haitun312366/article/details/8614797 二.PHP memcache 队列类 htt ...
- node.js实用小模块
1.浮点数操作 npm install float 2.MD5加密类 npm install MD5 3.xml解析类 1 npm install elementtree 4.转换字符串大小写 1 n ...
- centos系列——1
今天开始好好学一下centos,下面记录全过程,以方便后来查阅. 开机后用户名为root. 忘记密码修改方法: 以GRUB 多系统引导程序启动,用GRUB引导系统进入单用户步骤:(1) 启动GRUB, ...
- BZOJ 3339 && BZOJ 3585 莫队+权值分块
显然若一个数大于n就不可能是答案. #include <iostream> #include <cstring> #include <cstdio> #includ ...
- viewBox A-Z滚动样式
效果图: 代码实现 (其中使用了ionic框架...) html 代码: <ion-content class='page-location'> <div class=' ...
- codeforces 721C (拓排 + DP)
题目链接:http://codeforces.com/contest/721/problem/C 题意:从1走到n,问在时间T内最多经过多少个点,按路径顺序输出. 思路:比赛的时候只想到拓排然后就不知 ...