TimeQuest 静态时序分析 基本概论
静态时序分析 基本概念
1. 背景
静态时序分析的前提就是设计者先提出要求,然后时序分析工具才会根据特定的时序模型进行分析,给出正确是时序报告。
进行静态时序分析,主要目的就是为了提高系统工作主频以及增加系统的稳定性。对很多数字电路设计来说,提高工作频率非常重要,因为高工作频率意味着高处理能力。通过附加约束可以控制逻辑的综合、映射、布局和布线,以减小逻辑和布线延时,从而提高工作频率。
2. 理论分析
2.1 固定参数launch edge、latch edge、Tsu、Th、Tco概念
2.1.1 launch edge
时序分析起点(launch edge):第一级寄存器数据变化的时钟边沿,也是静态时序分析的起点。
2.1.2 latch edge
时序分析终点(latch edge):数据锁存的时钟边沿,也是静态时序分析的终点。
2.1.3 Clock Setup Time (Tsu)
建立时间(Tsu):是指在时钟沿到来之前数据从不稳定到稳定所需的时间,如果建立的时间不满足要求那么数据将不能在这个时钟上升沿被稳定的打入触发器。如图3.2所示:
图3.2 建立时间图解
2.1.4 Clock Hold Time (Th)
保持时间(Th):是指数据稳定后保持的时间,如果保持时间不满足要求那么数据同样也不能被稳定的打入触发器。保持时间示意图如图3.3所示:
图3.3 保持时间图解
2.1.5 Clock-to-Output Delay(tco)
数据输出延时(Tco):这个时间指的是当时钟有效沿变化后,数据从输入端到输出端的最小时间间隔。
2.2 Clock skew
时钟偏斜(clock skew):是指一个时钟源到达两个不同寄存器时钟端的时间偏移,如图3.4所示:
图3.4 时钟偏斜
时钟偏斜计算公式如下:
Tskew = Tclk2 - Tclk1 (公式2-1)
2.2 Data Arrival Time
数据到达时间(Data Arrival Time):输入数据在有效时钟沿后到达所需要的时间。主要分为三部分:时钟到达寄存器时间(Tclk1),寄存器输出延时(Tco)和数据传输延时(Tdata),如图3.5所示
图3.5 数据到达时间
数据到达时间计算公式如下:
Data Arrival Time = Launch edge + Tclk1 +Tco + Tdata (公式2-2)
2.3 Clock Arrival Time
时钟到达时间(Clock Arrival Time):时钟从latch边沿到达锁存寄存器时钟输入端所消耗的时间为时钟到达时间,如图3.6所示
图3.6 时钟到达时间
时钟到达时间计算公式如下:
Clock Arrival Time = Lacth edge + Tclk2 (公式2-3)
2.4 Data Required Time(setup/hold)
数据需求时间(Data Required Time):在时钟锁存的建立时间和保持时间之间数据必须稳定,从源时钟起点达到这种稳定状态需要的时间即为数据需求时间。如图3.7所示:
图3.7 数据需求时间
(建立)数据需求时间计算公式如下:
Data Required Time = Clock Arrival Time - Tsu (公式2-4)
(保持)数据需求时间计算公式如下:
Data Required Time = Clock Arrival Time + Th (公式2-5)
2.5 Setup slack
建立时间余量(setup slack):当数据需求时间大于数据到达时间时,就说时间有余量,Slack是表示设计是否满足时序的一个称谓。
图3.8 建立时间余量
如图3.8所示,建立时间余量的计算公式如下:
Setup slack = Data Required Time - Data Arrival Time (公式2-6)
由公式可知,正的slack表示数据需求时间大于数据到达时间,满足时序(时序的余量),负的slack表示数据需求时间小于数据到达时间,不满足时序(时序的欠缺量)。
3.1.7 时钟最小周期
时钟最小周期:系统时钟能运行的最高频率。
1. 当数据需求时间大于数据到达时间时,时钟具有余量;
2. 当数据需求时间小于数据到达时间时,不满足时序要求,寄存器经历亚稳态或者不能正确获得数据;
3. 当数据需求时间等于数据到达时间时,这是最小时钟运行频率,刚好满足时序。
从以上三点可以得出最小时钟周期为数据到达时间等于数据需求时间,的运算公式如下:
Data Required Time = Data Arrival Time
图解Setup 与 Hold Slack
从上面两个图中可以清晰的看出Setup与Hold Slack的定义与计算方法:
Setup slack=latch edge+Tclk2-Tsu-(launch edge+Tclk1+Tco+Tdata)
=(latch edge-lanuch edge)+(Tclk2-Tclk1)-(Tsu+Tco+Tdata)
对于工具默认的单周期来说,latch edge-lanuch edge=T,如果不考虑时钟的skew,Tclk2-Tclk1=0,上式可以表达成:
Setup slack=T-(Tsu+Tco+Tdata),这就是为什么说源寄存器与目的寄存器之间延迟不能太长的原因,延迟越长,slack越小。
Hold slack=data arrival time – data required time
=(launch edge + Tclk1 + Tco + Tdata) – (latch edge + Tclk2 + Th)
=(launch edge – latch edge) – (Tclk2 – Tclk1) + (Tco + Tdata + Th)
注意,上式中的launch edge为next launch edge,即为latch edge,所以launch edge – latch edge=0,如果不考虑时钟的skew,Tclk2-Tclk1=0,上式可以表达成:
Hold slack=Tco + Tdata – Th,这就是为什么说源寄存器与目的寄存器之间延迟不能太短的原因,时间太短,slack越小。
setup slack 计算
hold slack 计算
TimeQuest 静态时序分析 基本概论的更多相关文章
- Timequest静态时序分析(STA)基础
Setup Slack Hold Slack Recovery&Removal Recovery: The minimum time an asynchronous signal must b ...
- 【黑金原创教程】【TimeQuest】【第一章】TimeQuest 静态时序分析模型的概念
声明:本文为黑金动力社区(http://www.heijin.org)原创教程,如需转载请注明出处,谢谢! 黑金动力社区2013年原创教程连载计划: http://www.cnblogs.com/ ...
- 静态时序分析(static timing analysis)
静态时序分析(static timing analysis,STA)会检测所有可能的路径来查找设计中是否存在时序违规(timing violation).但STA只会去分析合适的时序,而不去管逻辑操作 ...
- FPGA STA(静态时序分析)
1 FPGA设计过程中所遇到的路径有输入到触发器,触发器到触发器,触发器到输出,例如以下图所看到的: 这些路径与输入延时输出延时,建立和保持时序有关. 2. 应用背景 静态时序分析简称STA,它是一种 ...
- 静态时序分析基础STA
静态时序分析SAT 1. 背景 静态时序分析的前提就是设计者先提出要求,然后时序分析工具才会根据特定的时序模型进行分析,给出正确是时序报告. 进行静态时序分析,主要目的就是为了提高系统工作主频 ...
- FPGA基础知识8(FPGA静态时序分析)
任何学FPGA的人都跑不掉的一个问题就是进行静态时序分析.静态时序分析的公式,老实说很晦涩,而且总能看到不同的版本,内容又不那么一致,为了彻底解决这个问题,我研究了一天,终于找到了一种很简单的解读办法 ...
- FPGA静态时序分析基础
FPGA静态时序分析基础 基本概念 Skew: 时钟偏移 Skew表示时钟到达不同触发器的延时差别,Tskew = 时钟到达2号触发器的时刻 - 时钟到达1号触发器的时刻. Jitter: 时钟抖动 ...
- 静态时序分析SAT
1. 背景 静态时序分析的前提就是设计者先提出要求,然后时序分析工具才会根据特定的时序模型进行分析,给出正确是时序报告. 进行静态时序分析,主要目的就是为了提高系统工作主频以及增加系统的稳定性.对 ...
- 静态时序分析(static timing analysis) --- 时序路径
时序分析工具会找到且分析设计中的所有路径.每一个路径有一个起点(startpoint)和一个终点(endpoint).起点是设计中数据被时钟沿载入的那个时间点,而终点则是数据通过了组合逻辑被另一个时间 ...
随机推荐
- 010 winform
2016-01-23 1.winform应用程序是一种智能客户端技术,我们可以使用winform应用程序帮助我们获得信息或者传输信息等. 2.属性Name:在后台要获得前台的控件对象,需要使用Name ...
- POJ 题目1141 Brackets Sequence(区间DP记录路径)
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 27793 Accepted: 788 ...
- StoryBoard解惑
可以把StoryBoard看做是一组viewController对应的xib,以及它们之间的转换方式的集合.在StoryBoard中不仅可以看到 每个ViewController的布局样式,也可以明确 ...
- C# 里的if/switch
今天又重新翻了翻C# Step by Step if 语句 if(bool 表达式) { 语句块: } else { 语句块: } switch(day) { case 0: dayName=&quo ...
- 2014年7月份第1周51Aspx源码发布详情
QF万能视频播放器源码 2014-6-30 [VS2010]本源码是一个万能视频播放器源码.可实现各种格式的影片播放功能. 1.点击[开始]按钮,弹出窗口,选择影片路径,确定后即可播放.可拖拽滚 ...
- 入住cnblogs第一篇随笔 Hello, world!
在网上搜索计算机参考资料时经常看到各位大神的博客,甚是神往.今天我也在这里安家,记录自己的学习过程,也同各位共勉. 第一篇随笔,就用来测试一下这里的文本编辑器吧. //The C language # ...
- 发布网站时报错:未能将文件xxx复制到xxx,问题处理
发布时报错提示: 错误 1 未能将文件 UpLoad\images\73CDC40ECCA44550BA8201D2AC187A46.jpg 复制到 obj\Debug\Package\Package ...
- Android侧滑菜单代码实现
前两天学习了hyman老师讲的Android侧滑菜单的实现,经过自己的整理分享出来给大家学习一下 现在很多APP都有菜单侧滑的功能,本篇文章主要讲解使用自定义的HorizontalScrollView ...
- FTP : mput with no confirmation
When you are transferring multiple files to your destination, 'mput' or 'mget' will be the one comma ...
- Longest Increasing Path in a Matrix -- LeetCode 329
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...