一个点必然被路径覆盖,根据是否为路径的端点分类

\(f[x][0]\)表示以\(x\)为根的子树,\(x\)不为端点的最小路径覆盖数

\(f[x][1]\)表示以\(x\)为根的子树,\(x\)为一条路径端点的最小路径覆盖数

设当前做到了子树\(v\)

\[\begin{align*}
f[x][0]&=\min\{f[x][0]+f[v][0],f[x][1]+f[v][1]\}\\
f[x][1]&=\min\{f[x][1]+f[v][0],cnt+f[v][1]\}
\end{align*}
\]

其中\(cnt\)为之前子树中\(\sum f[pre][0]\)

怎么理解?

若\(x\)不是端点,那么它的儿子,要不都是拐点,要不就是一个儿子和\(x\)相连使\(x\)成为拐点

若\(x\)是端点,那么它的儿子,要不都是拐点,要不就是只有一个儿子是端点,其余是拐点

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio> using namespace std; inline int rd(){
int ret=0,f=1;char c;
while(c=getchar(),!isdigit(c))f=c=='-'?-1:1;
while(isdigit(c))ret=ret*10+c-'0',c=getchar();
return ret*f;
}
#define space() putchar(' ')
#define nextline() putchar('\n')
void pot(int x){if(!x)return;pot(x/10);putchar('0'+x%10);}
void out(int x){if(!x)putchar('0');if(x<0)putchar('-'),x=-x;pot(x);} const int MAXN = 100001; int nex[MAXN<<1],to[MAXN<<1];
int ecnt,head[MAXN];
inline void add(int x,int y){
nex[++ecnt] = head[x];
to[ecnt] = y;
head[x] = ecnt;
} int n; int f[MAXN][2]; void dfs(int x,int pre){
f[x][0]=f[x][1]=1;
int cnt=0;
for(int i=head[x];i;i=nex[i]){
int v=to[i];if(v==pre)continue;
dfs(v,x);
f[x][0]=min(f[x][0]+f[v][0],f[x][1]+f[v][1]-1);
f[x][1]=min(f[x][1]+f[v][0],cnt+f[v][1]);
cnt+=f[v][0];
}
} void solve() {
memset(f,0x3f,sizeof(f));
ecnt=0;
memset(head,0,sizeof(head));
n=rd();
int x,y;
for(int i=1;i<n;i++){
x=rd();y=rd();
add(x,y);add(y,x);
}
dfs(1,0);
out(min(f[1][0],f[1][1]));
nextline();
}
int main(){
for(int T=rd();T;T--)solve();
}

[BZOJ] 1907: 树的路径覆盖的更多相关文章

  1. [BZOJ 1907] 树的路径覆盖 【树形DP】

    题目链接:BZOJ - 1907 题目分析 使用树形 DP,f[x][0] 表示以 x 为根的子树不能与 x 的父亲连接的最小路径数(即 x 是一个折线的拐点). f[x][1] 表示以 x 为根的子 ...

  2. bzoj 1907: 树的路径覆盖【贪心+树形dp】

    我是在在做网络流最小路径覆盖的时候找到这道题的 然后发现是个贪心+树形dp \( f[i] \)表示在\( i \)为根的子树中最少有几条链,\( v[i] \) 表示在\( i \)为根的子树中\( ...

  3. BZOJ-1907 树的路径覆盖 贪心

    题意:给一个n个点的树,求树的最小路径覆盖.(这个最小路径覆盖不能有重点) 解法:往图论方向想很久,想得太复杂了,其实直接贪心.这个大佬题解写得很好: https://blog.csdn.net/bl ...

  4. 【bzoj1907】树的路径覆盖 树形dp

    题目描述 输入 输出 样例输入 1 7 1 2 2 3 2 4 4 6 5 6 6 7 样例输出 3 题解 树形dp 设f[x]表示以x为根的子树完成路径覆盖,且x为某条路径的一端(可以向上延伸)的最 ...

  5. BZOJ1907 树的路径覆盖

    ydc题解上写着贪心,后来又说是树形dp...可惜看不懂(顺便骗三连) 其实就是每个叶子开始拉一条链,从下面一路走上来,遇到能把两条链合起来的就合起来就好了. /******************* ...

  6. bzoj1907: 树的路径覆盖(树形DP)

    一眼题... f[i][0]表示在i连接一个子树的最小值,f[i][1]表示在i连接两个子树的最小值,随便转移... 样例挺强的1A了美滋滋... UPD:学习了2314的写法之后短了好多T T #i ...

  7. Codeforces 618D Hamiltonian Spanning Tree(树的最小路径覆盖)

    题意:给出一张完全图,所有的边的边权都是 y,现在给出图的一个生成树,将生成树上的边的边权改为 x,求一条距离最短的哈密顿路径. 先考虑x>=y的情况,那么应该尽量不走生成树上的边,如果生成树上 ...

  8. SPOJ UOFTCG - Office Mates (树的最小路径覆盖)

    UOFTCG - Office Mates no tags  Dr. Baws has an interesting problem. His N graduate students, while f ...

  9. SPOJ - UOFTCG 树的最小路径覆盖

    //SPOJ - UOFTCG 树的最小路径覆盖 #include <bits/stdc++.h> #include <vector> using namespace std; ...

随机推荐

  1. 聊聊 Laravel 5.5 的 「自动发现」

    ThinkSNS是什么? ThinkSNS(简称TS),一款全平台综合性社交系统,目前最新版本为ThinkSNS+.ThinkSNS V4 ThinkSNS[简]. 看了Taylor Otwell发表 ...

  2. 洛谷P2136 拉近距离

    题目背景 我是源点,你是终点.我们之间有负权环. --小明 题目描述 在小明和小红的生活中,有\(N\)个关键的节点.有\(M\)个事件,记为一个三元组\((S_i,T_i,W_i)\),表示从节点\ ...

  3. JS高级学习历程-16

    [正则表达式] 1()小括号使用 作用:① 提高表达式优先级关系 ② 提取子字符串内容 模式单元,每个小括号都算作一个模式单元内容,按照内容的下标可以给小括号计数. var  reg = /([0-9 ...

  4. F. Coprime Subsequences 莫比乌斯反演

    http://codeforces.com/contest/803/problem/F 这题正面做了一发dp dp[j]表示产生gcd = j的时候的方案总数. 然后稳稳地超时. 考虑容斥. 总答案数 ...

  5. Typora--Draw Diagrams With Markdown

    Typora Typora supports some Markdown extension for diagrams, you could enable this feature from pref ...

  6. Error occurred while loading plugins. CLI functionality may be limited.

    npm install --save-dev --save-exact @ionic/cli-plugin-ionic-angular@latest @ionic/cli-plugin-cordova ...

  7. 报错:java.lang.ClassCastException: [Ljava.lang.Object; cannot be cast to com.xxx.entity.PersonEntity

    报错:java.lang.ClassCastException: [Ljava.lang.Object; cannot be cast to com.xxx.entity.PersonEntity 代 ...

  8. markdown-Macdown

    #标题 [页面锚点](#name)   =>   <a name="name"></a>文字 **加粗**(Command-B) *斜体*(Comma ...

  9. background-size在IE8不兼容问题

    background-size在IE8及以下浏览器不兼容:要解决的话要用滤镜: filter: progid: DXImageTransform.Microsoft.AlphaImageLoader( ...

  10. SQL Server 填充因子

    在创建聚集索引时,表中的数据按照索引列中的值的顺序存储在数据库的数据页中.在表中插入新的数据行或更改索引列中的值时,Microsoft®   SQL   Server™   2000   可能必须重新 ...