poj 3068 Bridge Across Islands
| Time Limit: 1000MS | Memory Limit: 65536K | |||
| Total Submissions: 11196 | Accepted: 3292 | Special Judge | ||
Description
Thousands of thousands years ago there was a small kingdom located in the middle of the Pacific Ocean. The territory of the kingdom consists two separated islands. Due to the impact of the ocean current, the shapes of both the islands became convex polygons. The king of the kingdom wanted to establish a bridge to connect the two islands. To minimize the cost, the king asked you, the bishop, to find the minimal distance between the boundaries of the two islands.

Input
The input consists of several test cases.
Each test case begins with two integers N, M. (3 ≤ N, M ≤ 10000)
Each of the next N lines contains a pair of coordinates, which describes the position of a vertex in one convex polygon.
Each of the next M lines contains a pair of coordinates, which describes the position of a vertex in the other convex polygon.
A line with N = M = 0 indicates the end of input.
The coordinates are within the range [-10000, 10000].
Output
For each test case output the minimal distance. An error within 0.001 is acceptable.
Sample Input
4 4
0.00000 0.00000
0.00000 1.00000
1.00000 1.00000
1.00000 0.00000
2.00000 0.00000
2.00000 1.00000
3.00000 1.00000
3.00000 0.00000
0 0
Sample Output
1.00000 题意:求两个凸包之间的最近距离
思路:找到第一个凸包的右下角的顶点和第二个凸包左上角的顶点,第一个凸包从右下角顶点开始与逆时针方向的下一个顶点作直线,暂且固定这条直线,第二个凸包的左上角的顶点也与逆时针方向下一个顶点结合作直线,判断两条直线方向,若第二条直线需要逆时针转动才能转到第一条直线的方向,那么第二条直线继续逆时针旋转,即
逆时针方向找到接下来一个顶点,这个顶点与上一个顶点形成新的直线,直到当前形成的直线与第一条直线平行或者需要顺时针旋转才能转到第一条直线的方向为止停止转动,并计算当前的两条直线所在的线段的距离,更新最短距离。之后第一条直线逆时针转动到下一个方向后继续固定,重复上述算法。。

AC代码:
Source Code Problem: User: ach11090913
Memory: 980K Time: 172MS
Language: C++ Result: Accepted
Source Code
#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<algorithm>
#include<vector>
#include<set>
#include<cmath>
using namespace std;
#define EPS 1e-10
#define INF 0x3f3f3f3f
const int N_MAX = *+;
double add(double a,double b) {
if (abs(a + b) < EPS*(abs(a) + abs(b)))return ;
return a + b;
} struct P {
double x, y;
P(){}
P(double x,double y):x(x),y(y) {}
P operator +(P p) {
return P(add(x, p.x), add(y, p.y));
}
P operator -(P p) {
return P(add(x, -p.x), add(y, -p.y));
}
P operator *(P p) {
return P(x*p.x, y*p.y);
}
bool operator <(const P& p)const {
if (x != p.x)return x < p.x;
else return y < p.y;
}
double dot(P p) {
return add(x*p.x,y*p.y);
}
double det(P p) {
return add(x*p.y, -y*p.x);
}
double norm() {
return x*x + y*y;
}
double abs() {
return sqrt(norm());
} };
bool cmp_y1(const P&p,const P&q) {
if (p.y != q.y)
return p.y < q.y;
return p.x > q.x;
} struct Segment {
P p1, p2;
Segment(P p1=P(),P p2=P()):p1(p1),p2(p2) {}
};
typedef Segment Line;
typedef vector<P>Polygon; inline double cross(P A, P B, P C)
{
return (B - A).det(C - A);
} double getDistanceLP(Line l,P p) {
return fabs((l.p2 - l.p1).det(p - l.p1)) / ((l.p2 - l.p1).abs());
} double getDistanceSP(Segment s,P p) {
if ((s.p2 - s.p1).dot(p - s.p1) < 0.0)return (p - s.p1).abs();
if ((s.p1 - s.p2).dot(p - s.p2) < 0.0)return (p - s.p2).abs();
return getDistanceLP(s, p);
} double getDistance(Segment s1,Segment s2) {
return min(min(getDistanceSP(s1,s2.p1),getDistanceSP(s1,s2.p2)),
min(getDistanceSP(s2,s1.p1),getDistanceSP(s2,s1.p2)));
} Polygon po1, po2;
int N, M; vector<P> judge_clockwise(vector<P>p) {
for (int i = ; i < p.size()-;i++) {
//double tmp = (p[i + 1] - p[i]).det(p[i + 2] - p[i + 1]);
double tmp = cross(p[i], p[i + ], p[i + ]);
if (tmp > EPS)return p;
else if (tmp < -EPS) {
reverse(p.begin(), p.end());
return p;
}
}
return p;
} double solve() {
int i = , j = ;
for (int k = ; k < N;k++) {
if (!cmp_y1(po1[i], po1[k]))i = k;//i为凸包右下角
}
for (int k = ; k < M; k++) {
if (cmp_y1(po2[j], po2[k]))j = k;//j为凸包左上角
}
double res = INF;
for (int k = ; k< N;k++) {
while ((po1[i] - po1[(i + ) % N]).det(po2[(j + ) % M] - po2[j]) < ) j = (j + ) % M;
Segment s1, s2;
s1.p1 = po1[i], s1.p2 = po1[(i + ) % N],s2.p1=po2[j],s2.p2=po2[(j+)%M];
res = min(res, getDistance(s1, s2));
//cout << s1.p1.x << " " << s1.p1.y << " " << s1.p2.x << " " << s1.p2.y <<" " << s2.p1.x << " " << s2.p1.y << " " << s2.p2.x <<" "<< s2.p2.y << endl;
i = (i + ) % N;
}
return res;
} int main() { while (scanf("%d%d",&N,&M)&&N) {
po1.clear();
po2.clear();
for (int i = ; i < N;i++) {
double x, y;
scanf("%lf%lf",&x,&y);
po1.push_back(P(x,y));
}
po1=judge_clockwise(po1);
for (int i = ; i < M;i++) {
double x, y;
scanf("%lf%lf", &x, &y);
po2.push_back(P(x,y));
}
po2=judge_clockwise(po2);
printf("%.5f\n",solve());
}
return ;
}
poj 3068 Bridge Across Islands的更多相关文章
- POJ 3608 Bridge Across Islands [旋转卡壳]
Bridge Across Islands Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10455 Accepted: ...
- POJ 3608 Bridge Across Islands(旋转卡壳,两凸包最短距离)
Bridge Across Islands Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7202 Accepted: ...
- POJ 3608 Bridge Across Islands(计算几何の旋转卡壳)
Description Thousands of thousands years ago there was a small kingdom located in the middle of the ...
- POJ 3608 Bridge Across Islands --凸包间距离,旋转卡壳
题意: 给你两个凸包,求其最短距离. 解法: POJ 我真的是弄不懂了,也不说一声点就是按顺时针给出的,不用调整点顺序. 还是说数据水了,没出乱给点或给逆时针点的数据呢..我直接默认顺时针给的点居然A ...
- ●POJ 3608 Bridge Across Islands
题链: http://poj.org/problem?id=3608 题解: 计算几何,求两个凸包间的最小距离,旋转卡壳 两个凸包间的距离,无非下面三种情况: 所以可以基于旋转卡壳的思想,去求最小距离 ...
- POJ 3608 Bridge Across Islands (旋转卡壳)
[题目链接] http://poj.org/problem?id=3608 [题目大意] 求出两个凸包之间的最短距离 [题解] 我们先找到一个凸包的上顶点和一个凸包的下定点,以这两个点为起点向下一个点 ...
- poj 3608 Bridge Across Islands
题目:计算两个不相交凸多边形间的最小距离. 分析:计算几何.凸包.旋转卡壳.分别求出凸包,利用旋转卡壳求出对踵点对,枚举距离即可. 注意:1.利用向量法判断旋转,而不是计算角度:避免精度问题和TLE. ...
- POJ - 3608 Bridge Across Islands【旋转卡壳】及一些有趣现象
给两个凸包,求这两个凸包间最短距离 旋转卡壳的基础题 因为是初学旋转卡壳,所以找了别人的代码进行观摩..然而发现很有意思的现象 比如说这个代码(只截取了关键部分) double solve(Point ...
- poj 3608 Bridge Across Islands 两凸包间最近距离
/** 旋转卡壳,, **/ #include <iostream> #include <algorithm> #include <cmath> #include ...
随机推荐
- javaweb基础(21)_两种开发模式
SUN公司推出JSP技术后,同时也推荐了两种web应用程序的开发模式,一种是JSP+JavaBean模式,一种是Servlet+JSP+JavaBean模式. 一.JSP+JavaBean开发模式 1 ...
- 酷炫的3D照片墙
今天给大家分享的案例是酷炫的3D照片墙 这个案例主要是通过 CSS3 和原生的 JS 来实现的,接下来我给大家分享一下这个效果实现的过程.博客上不知道怎么放本地视频,所以只能放两张效果截图了. 1.实 ...
- C#基础-数组-冒泡排序
冒泡排序基础 冒泡排序原理图分析 tmp在算法中起到数据交换的作用 int[] intNums = { 12,6,9,3,8,7 }; int tmp = intNums[0]; // 一共5次冒泡, ...
- centos7无法切换startx
centos光盘安装后,显示命令行模式,通过startx无法进入图形界面? 解决方法:1.使用yum grouplist查看,根据显示的结果采用不同的界面格式,我用的是 yum groupinstal ...
- linux文件属性之用户和组基础知识
root :x :0 :0 :root ...
- Linux系统入门-Bash初识
目录 Linux系统入门-Bash初识 Bash Shell介绍 Bash Shell的作用 Bash的两种使用方式 命令提示符 shell的基础语法 shell的基本特性 命令补全 linux快捷键 ...
- c语言之内存管理
在计算机系统,特别是嵌入式系统中,内存资源是非常有限的.尤其对于移动端开发者来说,硬件资源的限制使得其在程序设计中首要考虑的问题就是如何有效地管理内存资源.本文是作者在学习C语言内存管理的过程中做的一 ...
- Python学习笔记(一):基础知识
一.什么是python? python是一种面向对象.解释型的计算机语言,它的特点是语法简洁.优雅.简单易学 二.编译型语言和解释型语言 编译型语言就是把程序编译成计算机语言然后执行,(一次编译到处运 ...
- 多进程 multiprocessing 多线程Threading 线程池和进程池concurrent.futures
multiprocessing.procsess 定义一个函数 def func():pass 在if __name__=="__main__":中实例化 p = process( ...
- python getopt模块使用方法
python中 getopt 模块,是专门用来处理命令行参数的 getop标准格式: 函数getopt(args, shortopts, longopts = []) shortopts 是短参数 ...