K个逆序对数组

给出两个整数 n 和 k,找出所有包含从 1 到 n 的数字,且恰好拥有 k 个逆序对的不同的数组的个数。

逆序对的定义如下:对于数组的第i个和第 j个元素,如果满i < j且 a[i] > a[j],则其为一个逆序对;否则不是。

由于答案可能很大,只需要返回 答案 mod 109 + 7 的值。

示例 1:

输入: n = 3, k = 0

输出: 1

解释:

只有数组 [1,2,3] 包含了从1到3的整数并且正好拥有 0 个逆序对。

示例 2:

输入: n = 3, k = 1

输出: 2

解释:

数组 [1,3,2] 和 [2,1,3] 都有 1 个逆序对。

说明:

  1. n 的范围是 [1, 1000] 并且 k 的范围是 [0, 1000]。

思路

这道题给了我们1到n总共n个数字,让我们任意排列数组的顺序,使其刚好存在k个翻转对,所谓的翻转对,就是位置在前面的数字值大,而且题目中表明了结果会很大很大,要我们对一个很大的数字取余。对于这种结果巨大的题目,劝君放弃暴力破解或者是无脑递归,想都不用想,那么最先应该考虑的就是DP的解法了。我们需要一个二维的DP数组,其中dp[i][j]表示1到i的数字中有j个翻转对的排列总数,那么我们要求的就是dp[n][k]了,即1到n的数字中有k个翻转对的排列总数。现在难点就是要求递推公式了。我们想如果我们已经知道dp[n][k]了,怎么求dp[n+1][k],先来看dp[n+1][k]的含义,是1到n+1点数字中有k个翻转对的个数,那么实际上在1到n的数字中的某个位置加上了n+1这个数,为了简单起见,我们先让n=4,那么实际上相当于要在某个位置加上5,那么加5的位置就有如下几种情况:

xxxx5

xxx5x

xx5xx

x5xxx

5xxxx

这里xxxx表示1到4的任意排列,那么第一种情况xxxx5不会增加任何新的翻转对,因为xxxx中没有比5大的数字,而 xxx5x会新增加1个翻转对,xx5xx,x5xxx,5xxxx分别会增加2,3,4个翻转对。那么xxxx5就相当于dp[n][k],即dp[4][k],那么依次往前类推,就是dp[n][k-1], dp[n][k-2]...dp[n][k-n],这样我们就可以得出dp[n+1][k]的求法了:

dp[n+1][k] = dp[n][k] + dp[n][k-1] + ... + dp[n][k - n]

那么dp[n][k]的求法也就一目了然了:

dp[n][k] = dp[n - 1][k] + dp[n - 1][k-1] + ... + dp[n - 1][k - n + 1]

那么我们就可以写出代码如下了:

 class Solution {
public int kInversePairs(int n, int k) {
int M=1000000007;
int[][] dp=new int[n+1][k+1];
dp[0][0]=1;
for(int i=0;i<=n;i++){
for(int j=0;j<i;++j){
for(int m=0;m<=k;m++){
if(m-j>=0&&m-j<=k){
dp[i][m]=(dp[i][m]+dp[i-1][m-j])%M;
}
}
}
}
return dp[n][k];
}
}

我们可以对上面的解法进行时间上的优化,还是来看我们的递推公式:

dp[n][k] = dp[n - 1][k] + dp[n - 1][k-1] + ... + dp[n - 1][k - n + 1]

我们可以用k+1代替k,得到:

dp[n][k+1] = dp[n - 1][k+1] + dp[n - 1][k] + ... + dp[n - 1][k + 1 - n + 1]

用第二个等式减去第一个等式可以得到:

dp[n][k+1] = dp[n][k] + dp[n - 1][k+1] - dp[n - 1][k - n + 1]

将k+1换回成k,可以得到:

dp[n][k] = dp[n][k-1] + dp[n - 1][k] - dp[n - 1][k - n]

我们可以发现当k>=n的时候,最后一项的数组坐标才能为非负数,从而最后一项才有值,所以我们再更新的时候只需要判断一下k和n的关系,如果k>=n的话,就要减去最后一项,这种递推式算起来更高效,减少了一个循环,参见代码如下:

 class Solution {
public int kInversePairs(int n, int k) {
int mo=1000000007;
int[][] f=new int[1002][1002];
f[1][0]=1;
for (int i=2;i<=n;i++) {
f[i][0]=1;
for (int j=1;j<=k;j++) {
f[i][j]=(f[i][j-1]+f[i-1][j])%mo;
if (j>=i) f[i][j]=(f[i][j]-f[i-1][j-i]+mo)%mo;
}
}
return f[n][k];
}
}

Leetcode 629.K个逆序对数组的更多相关文章

  1. Java实现 LeetCode 629 K个逆序对数组(动态规划+数学)

    629. K个逆序对数组 给出两个整数 n 和 k,找出所有包含从 1 到 n 的数字,且恰好拥有 k 个逆序对的不同的数组的个数. 逆序对的定义如下:对于数组的第i个和第 j个元素,如果满i < ...

  2. [Swift]LeetCode629. K个逆序对数组 | K Inverse Pairs Array

    Given two integers n and k, find how many different arrays consist of numbers from 1 to n such that ...

  3. XJTUOJ wmq的队伍(树状数组求 K 元逆序对)

    题目链接:http://oj.xjtuacm.com/problem/14/[分析]二元的逆序对应该都会求,可以用树状数组.这个题要求K元,我们可以看成二元的.我们先从后往前求二元逆序对数, 然后对于 ...

  4. 剑指offer-数组中的逆序对-数组-python

    题目描述 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数P.并将P对1000000007取模的结果输出. 即输出P%1000 ...

  5. 【leetcode dp】629. K Inverse Pairs Array

    https://leetcode.com/problems/k-inverse-pairs-array/description/ [题意] 给定n和k,求正好有k个逆序对的长度为n的序列有多少个,0& ...

  6. HDU 4911 http://acm.hdu.edu.cn/showproblem.php?pid=4911(线段树求逆序对)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4911 解题报告: 给出一个长度为n的序列,然后给出一个k,要你求最多做k次相邻的数字交换后,逆序数最少 ...

  7. luogu 1521-求逆序对

    题意: 逆序对指在一个序列中ai>aj && i < j,也就是一前一后两个数,当大的在前面的时候即算一对. 题目求在一个由1-n组成的序列中逆序对为k的序列的个数. 出题 ...

  8. 诸城模拟赛 dvd的逆序对

    [题目描述] dvd是一个爱序列的孩子. 他对序列的热爱以至于他每天都在和序列度过 但是有一个问题他却一直没能解决 给你n,k求1~n有多少排列有恰好k个逆序对 [输入格式] 一行两个整数n,k [输 ...

  9. 力扣Leetcode 面试题51. 数组中的逆序对 - 归并排序

    在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数. 示例 1: 输入: [7,5,6,4] 输出: 5 限制: 0 <= ...

随机推荐

  1. SVN和Git的区别

    这个地方就简单介绍一下 svn 的模式是: 1.写代码. 2.从服务器拉回服务器的当前版本库,并解决服务器版本库与本地代码的冲突. 3.将本地代码提交到服务器. Git分布式版本管理的模式是: 1.写 ...

  2. codeforce 599B Spongebob and Joke

    一道水题WA那么多发,也是醉了.f看成函数的话,其实就是判断一下反函数存不存在. 坑点,只能在定义域内判断,也就是只判断b[i].没扫一遍前不能确定Impossible. #include<bi ...

  3. SPOJ - MATSUM Matrix Summation---二维树状数组

    题目链接: https://vjudge.net/problem/SPOJ-MATSUM 题目大意: 二维数组,两种操作 SET 将某点设置成x SUM 求某个区域之和 解题思路: 这里用二维树状数组 ...

  4. FreeRTOS_软件定时器

    FreeRTOS 软件定时器 实验 创建2个任务,start_task.timercontrol_task. start_stask:创建timercontrol_task任务:创建周期定时器Auto ...

  5. 人脸验证算法Joint Bayesian详解及实现(Python版)

    人脸验证算法Joint Bayesian详解及实现(Python版) Tags: JointBayesian DeepLearning Python 本博客仅为作者记录笔记之用,不免有很多细节不对之处 ...

  6. 【数学 随机 技巧】cf364D. Ghd

    随机化选讲的例题 John Doe offered his sister Jane Doe find the gcd of some set of numbers a. Gcd is a positi ...

  7. Linux运维企业架构项目实战系列

    Linux运维企业架构项目实战系列 项目实战1—LNMP的搭建.nginx的ssl加密.权限控制的实现 项目实战2—LVS.nginx实现负载均衡系列2.1 项目实战2.1—实现基于LVS负载均衡集群 ...

  8. JavaScript 基础语法

    1 谈谈 JavaScript JavaScript,通常会简称为'JS', 是一种浏览器脚本语言 1.1 JavaScript 编程语言特点 JavaScript是一种脚本编程语言 JavaScri ...

  9. HTML5/CSS3 第二章页面组件

    页面组件 1 元素的尺寸/边框/背景 1.1 css尺寸相关属性 height 高度 min-height 最小高度 max-height 最大高度 width 宽度 min-width 最小宽度 m ...

  10. ATM-conf-settings

    import os BASE_DIR = os.path.dirname(os.path.dirname(__file__))BASE_DB = os.path.join(BASE_DIR, 'db' ...