MST

Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others)

Problem Description

Given a connected, undirected graph, a spanning tree of that graph is a subgraph that is a tree and connects all the vertices together.  A single graph can have many different spanning trees. We can also assign a weight to each edge, which is a number representing how unfavorable it is, and use this to assign a weight to a spanning tree by computing the sum of the weights of the edges in that spanning tree. A minimum spanning tree (MST) is then a spanning tree with weight less than or equal to the weight of every other spanning tree.
------ From wikipedia
Now we make the problem more complex. We assign each edge two kinds of
weight: length and cost. We call a spanning tree with sum of length less
than or equal to others MST. And we want to find a MST who has minimal
sum of cost.

Input

There are multiple test cases.
The first line contains two integers N and M indicating the number of vertices and edges in the gragh.
The next M lines, each line contains three integers a, b, l and c indicating there are an edge with l length and c cost between a and b.

1 <= N <= 10,000
1 <= M <= 100,000
1 <= a, b <= N
1 <= l, c <= 10,000

Output

For each test case output two integers indicating the sum of length and cost of corresponding MST.
If you can find the corresponding MST, please output "-1 -1".

Sample Input

4 5
1 2 1 1
2 3 1 1
3 4 1 1
1 3 1 2
2 4 1 3

Sample Output

3 3

Source

dut200901102

Manager

 
解题:是的,没错,就是MST,只是是双关键字排序
 #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = ;
struct arc{
int u,v,length,cost;
bool operator<(const arc &rhs)const{
if(length == rhs.length) return cost < rhs.cost;
return length < rhs.length;
}
}e[maxn];
int uf[maxn];
int Find(int x){
if(x != uf[x]) uf[x] = Find(uf[x]);
return uf[x];
}
int main(){
int n,m;
while(~scanf("%d%d",&n,&m)){
for(int i = ; i < m; ++i)
scanf("%d%d%d%d",&e[i].u,&e[i].v,&e[i].length,&e[i].cost);
for(int i = ; i <= n; ++i) uf[i] = i;
sort(e,e + m);
LL length = ,cost = ,cnt = ;
for(int i = ; i < m && cnt + < n; ++i){
int u = Find(e[i].u);
int v = Find(e[i].v);
if(u == v) continue;
uf[u] = v;
length += e[i].length;
cost += e[i].cost;
++cnt;
}
if(cnt + == n) printf("%lld %lld\n",length,cost);
else puts("-1 -1");
}
return ;
}

ACdream 1135 MST的更多相关文章

  1. ACdream 1135(MST-最小生成树边上2个值,维护第一个最小的前提下让还有一个最小)

    F - MST Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) SubmitStatu ...

  2. POJ1679 The Unique MST[次小生成树]

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28673   Accepted: 10239 ...

  3. 基于MST的立体匹配及相关改进(A Non-Local Cost Aggregation Method for Stereo Matching)

    怀着很纠结的心情来总结这篇论文,这主要是因为作者提虽然供了源代码,但是我并没有仔细去深究他的code,只是把他的算法加进了自己的项目.希望以后有时间能把MST这一结构自己编程实现!! 论文题目是基于非 ...

  4. BZOJ 2654 & 玄学二分+MST

    题意: 给一张图,边带权且带颜色黑白,求出一棵至少包含k条白边的MST SOL: 正常人都想优先加黑边或者是白边,我也是这么想的...你看先用白边搞一棵k条边的MST...然后维护比较黑边跟白边像堆一 ...

  5. LA 5713 秦始皇修路 MST

    题目链接:http://vjudge.net/contest/144221#problem/A 题意: 秦朝有n个城市,需要修建一些道路使得任意两个城市之间都可以连通.道士徐福声称他可以用法术修路,不 ...

  6. [poj1679]The Unique MST(最小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28207   Accepted: 10073 ...

  7. [BZOJ2654]tree(二分+MST)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2654 分析:此题很奇葩,我们可以给所有白边加上一个权值mid,那么在求得的MST中白边 ...

  8. CodeForces 125E MST Company

    E. MST Company time limit per test 8 seconds memory limit per test 256 megabytes input standard inpu ...

  9. 2015baidu复赛2 连接的管道(mst && 优先队列prim)

    连接的管道 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

随机推荐

  1. Django框架和前端的的基本结合

    1 昨日回顾 a socket b 路由关系 c 模板字符串替换(模板语言) 主流web框架总结: django a用别人的 b自己写的 c自己写的 flask a用别人的 b自己写的 c用别人的(j ...

  2. WebService学习之旅(七)Axis2发布WebService的几种方式

    前面几篇文章中简单的介绍了如何使用Axis2发布WebService及如何使用Axis2实现Web服务的客户端调用,本节將详细介绍Axis2发布WebService的几种方式. 一.使用aar包方式发 ...

  3. Python安装第三方库文件工具——pip

    Python安装第三方库文件一般使用pip. 1.pip的安装 (1)下载pip 进入https://pypi.python.org/pypi/pip#downloads

  4. iOS Block的本质(四)

    iOS Block的本质(四) 上一篇文章iOS Block的本质(三)中已经介绍过block变量的捕获,本文继续探寻block的本质. 1. block内修改变量的值 int main(int ar ...

  5. 网络大牛如何回答Chrome的15个刁钻面试题?

    (内容来自网络整理) Google的面试题在刁钻古怪方面相当出名,甚至已经有些被神化的味道.这里整理出15道Google面试题并一一给出了网络大牛的答案,其中不少都是流传很广的. 第1题:让你清洗西雅 ...

  6. [转]八款开源Android游戏引擎

    八款开源Android游戏引擎 1.Angle Angle是一款专为Android平台设计的,敏捷且适合快速开发的2D游戏引擎,基于OpenGL ES技术开发.该引擎全部用Java代码编写,并且可以根 ...

  7. UVALive 4287 Proving Equivalence (强连通分量)

    把证明的关系看出一张图,最终就是要所有的点都在至少一个环中.环的判断和度数有关. 用tarjan找强连通分量,在一个强连通分量点已经等价缩点以后形成一个DAG,计算入度为0的点数a, 出度为0的b,取 ...

  8. Codeforces Gym 100650B Countdown (离线)

    题目链接:http://codeforces.com/gym/100650 根据给出的树和d,求出一些结点,这些结点形成子树的第d层结点数应该尽量多,具体要求可以参考题目. dfs一个结点前保存询问深 ...

  9. HDU 6166 Senior Pan(多校第九场 二进制分组最短路)

    题意:给出n个点和m条有向边(有向边!!!!我还以为是无向查了半天),然后给出K个点,问这k个点中最近的两点的距离 思路:比赛时以为有询问,就直接丢了,然后这题感觉思路很棒,加入把所有点分成起点和终点 ...

  10. 一条SQL语句在MySQL中是如何执行的

    概览 本篇文章会分析下一个sql语句在mysql中的执行流程,包括sql的查询在mysql内部会怎么流转,sql语句的更新是怎么完成的. 一.mysql架构分析 mysql主要分为Server层和存储 ...