有关树的理论部分描述:《数据结构与算法》-4-树与二叉树

  下面代码均基于python实现,包含:

  • 二叉树的前序、中序、后序遍历的递归算法和非递归算法
  • 层次遍历
  • 由前序序列、中序序列重构二叉树
  • 由后序序列、中序序列重构二叉树
# -*- coding: utf-8 -*-
# @Time: 2019-04-15 18:35
# @Author: chen class NodeTree:
def __init__(self, root=None, lchild=None, rchild=None):
"""创建二叉树
Argument:
lchild: BinTree
左子树
rchild: BinTree
右子树 Return:
Tree
"""
self.root = root
self.lchild = lchild
self.rchild = rchild class BinTree: # -----------前序遍历 ------------
# 递归算法
def pre_order_recursive(self, T):
if T == None:
return
print(T.root, end=' ')
self.pre_order_recursive(T.lchild)
self.pre_order_recursive(T.rchild) # 非递归算法
def pre_order_non_recursive(self, T):
"""借助栈实现前驱遍历
"""
if T == None:
return
stack = []
while T or len(stack) > 0:
if T:
stack.append(T)
print(T.root, end=' ')
T = T.lchild
else:
T = stack[-1]
stack.pop()
T = T.rchild # -----------中序遍历 ------------
# 递归算法
def mid_order_recursive(self, T):
if T == None:
return
self.mid_order_recursive(T.lchild)
print(T.root, end=' ')
self.mid_order_recursive(T.rchild) # 非递归算法
def mid_order_non_recursive(self, T):
"""借助栈实现中序遍历
"""
if T == None:
return
stack = []
while T or len(stack) > 0:
if T:
stack.append(T)
T = T.lchild
else:
T = stack.pop()
print(T.root, end=' ')
T = T.rchild # -----------后序遍历 ------------
# 递归算法
def post_order_recursive(self, T):
if T == None:
return
self.post_order_recursive(T.lchild)
self.post_order_recursive(T.rchild)
print(T.root, end=' ') # 非递归算法
def post_order_non_recursive(self, T):
"""借助两个栈实现后序遍历
"""
if T == None:
return
stack1 = []
stack2 = []
stack1.append(T)
while stack1:
node = stack1.pop()
if node.lchild:
stack1.append(node.lchild)
if node.rchild:
stack1.append(node.rchild)
stack2.append(node)
while stack2:
print(stack2.pop().root, end=' ')
return # -----------层次遍历 ------------
def level_order(self, T):
"""借助队列(其实还是一个栈)实现层次遍历
"""
if T == None:
return
stack = []
stack.append(T)
while stack:
node = stack.pop(0) # 实现先进先出
print(node.root, end=' ')
if node.lchild:
stack.append(node.lchild)
if node.rchild:
stack.append(node.rchild) # ----------- 前序遍历序列、中序遍历序列 —> 重构二叉树 ------------
def tree_by_pre_mid(self, pre, mid):
if len(pre) != len(mid) or len(pre) == 0 or len(mid) == 0:
return
T = NodeTree(pre[0])
index = mid.index(pre[0])
T.lchild = self.tree_by_pre_mid(pre[1:index+1], mid[:index])
T.rchild = self.tree_by_pre_mid(pre[index+1:], mid[index+1:])
return T # ----------- 后序遍历序列、中序遍历序列 —> 重构二叉树 ------------
def tree_by_post_mid(self, post, mid):
if len(post) != len(mid) or len(post) == 0 or len(mid) == 0:
return
T = NodeTree(post[-1])
index = mid.index(post[-1])
T.lchild = self.tree_by_post_mid(post[:index], mid[:index])
T.rchild = self.tree_by_post_mid(post[index:-1], mid[index+1:])
return T if __name__ == '__main__': # ----------- 测试:前序、中序、后序、层次遍历 -----------
# 创建二叉树
nodeTree = NodeTree(1,
lchild=NodeTree(2,
lchild=NodeTree(4,
rchild=NodeTree(7))),
rchild=NodeTree(3,
lchild=NodeTree(5),
rchild=NodeTree(6)))
T = BinTree()
T.pre_order_recursive(nodeTree) # 前序遍历-递归
print('\n')
T.pre_order_non_recursive(nodeTree) # 前序遍历-非递归
print('\n')
T.mid_order_recursive(nodeTree) # 中序遍历-递归
print('\n')
T.mid_order_non_recursive(nodeTree) # 前序遍历-非递归
print('\n')
T.post_order_recursive(nodeTree) # 后序遍历-递归
print('\n')
T.post_order_non_recursive(nodeTree) # 前序遍历-非递归
print('\n')
T.level_order(nodeTree) # 层次遍历
print('\n') print('==========================================================================') # ----------- 测试:由遍历序列构造二叉树 -----------
T = BinTree()
pre = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']
mid = ['B', 'C', 'A', 'E', 'D', 'G', 'H', 'F', 'I']
post = ['C', 'B', 'E', 'H', 'G', 'I', 'F', 'D', 'A'] newT_pre_mid = T.tree_by_pre_mid(pre, mid) # 由前序序列、中序序列构造二叉树
T.post_order_recursive(newT_pre_mid) # 获取后序序列
print('\n') newT_post_mid = T.tree_by_post_mid(post, mid) # 由后序序列、中序序列构造二叉树
T.pre_order_recursive(newT_post_mid) # 获取前序序列

  测试用的两个二叉树:

Python实现二叉树的前序、中序、后序、层次遍历的更多相关文章

  1. 分别求二叉树前、中、后序的第k个节点

    一.求二叉树的前序遍历中的第k个节点 //求先序遍历中的第k个节点的值 ; elemType preNode(BTNode *root,int k){ if(root==NULL) return ' ...

  2. 算法进阶面试题03——构造数组的MaxTree、最大子矩阵的大小、2017京东环形烽火台问题、介绍Morris遍历并实现前序/中序/后序

    接着第二课的内容和带点第三课的内容. (回顾)准备一个栈,从大到小排列,具体参考上一课.... 构造数组的MaxTree [题目] 定义二叉树如下: public class Node{ public ...

  3. 二叉树 遍历 先序 中序 后序 深度 广度 MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  4. 前序+中序->后序 中序+后序->前序

    前序+中序->后序 #include <bits/stdc++.h> using namespace std; struct node { char elem; node* l; n ...

  5. SDUT OJ 数据结构实验之二叉树八:(中序后序)求二叉树的深度

    数据结构实验之二叉树八:(中序后序)求二叉树的深度 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Probl ...

  6. SDUT-2804_数据结构实验之二叉树八:(中序后序)求二叉树的深度

    数据结构实验之二叉树八:(中序后序)求二叉树的深度 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 已知一颗二叉树的中序 ...

  7. 给出 中序&后序 序列 建树;给出 先序&中序 序列 建树

    已知 中序&后序  建立二叉树: SDUT 1489 Description  已知一棵二叉树的中序遍历和后序遍历,求二叉树的先序遍历 Input  输入数据有多组,第一行是一个整数t (t& ...

  8. 【C&数据结构】---关于链表结构的前序插入和后序插入

    刷LeetCode题目,需要用到链表的知识,忽然发现自己对于链表的插入已经忘得差不多了,以前总觉得理解了记住了,但是发现真的好记性不如烂笔头,每一次得学习没有总结输出,基本等于没有学习.连复盘得机会都 ...

  9. 【数据结构】二叉树的遍历(前、中、后序及层次遍历)及leetcode107题python实现

    文章目录 二叉树及遍历 二叉树概念 二叉树的遍历及python实现 二叉树的遍历 python实现 leetcode107题python实现 题目描述 python实现 二叉树及遍历 二叉树概念 二叉 ...

随机推荐

  1. 转载 j2ee j2se j2me 区别,mvc 和ssh联系理解

    [转]J2SE J2EE J2ME的区别 以及 MVC与SSH对应关系 2014-3-6阅读322 评论0 J2SE J2EE J2ME的区别多数编程语言都有预选编译好的类库以支持各种特定的功能,在J ...

  2. touchweb手机网站图片加载方法(canvas加载和延迟加载)

    一.canvas图片加载 关于canvas加载,我的方法是,将文章中所有用到图片的地方,都用canvas代替,给canvas一个data-src,里面存放img的路径,通过canvas方法渲染图片.因 ...

  3. MySQL 中事务的实现

    在关系型数据库中,事务的重要性不言而喻,只要对数据库稍有了解的人都知道事务具有 ACID 四个基本属性,而我们不知道的可能就是数据库是如何实现这四个属性的: 在这篇文章中,我们将对事务的实现进行分析, ...

  4. uboot 从sd卡加载文件并烧写到nand flash

    uboot下可以从用tftp和nfs加载文件. 但是现在有个开发板配套uboot网络功能出现异常,执行ping命令就会导致开发板重启,只能选择先从sd卡加载文件 启动开发板,任意键进入uboot,然后 ...

  5. <关于J2EE环境的搭建>在Fedora21下的Tomcat,Mysql,jdk以及Intellij的搭建过程

    题外话:一开始很不情愿写这种没有技术含量的博文,但是网上对于fedora21下的整个J2EE环境的搭建过程的文章实在是少之又少,那我就破个例吧:-p (一)JDK的下载及环境变量的设置 如果你对JDK ...

  6. URAL - 1297 Palindrome —— 后缀数组 最长回文子串

    题目链接:https://vjudge.net/problem/URAL-1297 1297. Palindrome Time limit: 1.0 secondMemory limit: 64 MB ...

  7. hdu1085Holding Bin-Laden Captive!组合问题

    题目连接 题目意思:有单位价值为1 2 5的三种硬币,分别给出他们的数量,求用这些硬币不能组成的最小的价值 解题思路:普通的母函数 普通的母函数: 利用母函数的思想可以解决很多组合问题,下面举例说明: ...

  8. labview初步理解

    1.labview是NI公司开发的一款以图形方式开发程序(G语言)的程序开发环境软件.它的作用与VS一样,是一种程序开发环境.只是vs是以文本语言开发环境而已. 2.labview最广泛应用于开发测试 ...

  9. POJ3417Network(LCA+树上查分||树剖+线段树)

    Yixght is a manager of the company called SzqNetwork(SN). Now she's very worried because she has jus ...

  10. ACM学习历程—HDU4717 The Moving Points(模拟退火 || 三分法)

    Description There are N points in total. Every point moves in certain direction and certain speed. W ...