Linear Regression 线性回归
Motivation 问题描述
收集到某一地区的房子面积和房价的数据(x, y)42组,对于一套已知面积的房子预测其房价?


由房价数据可视化图可以看出,可以使用一条直线拟合房价。通过这种假设得到的预测值和真实值比较接近。
Model 模型
将现实的问题通过数学模型描述出来。
m 个 样本(example)组成训练集(training set),每一个样本有n个特征(feature)和一个标签(label)。目的是,通过一个数学模型(algorithm)和参数(parameters)将每一个样本和标签映射。这样,给定一个未知的样本就可以通过建立的数学模型预测其标签。
| 参数 | 解释 |
|---|---|
| m | 样例数 training set |
| n | 特征数 no. of features |
| X | (m*(n+1)) |
| y | (m*1) |
| \(\Theta\) | ((n+1)*1) \(X\theta=y\) |
Hypothesis 假设
假设房价由此方程拟合
\[h_\theta(x) = \theta_0+\theta_1x\]
其中\(\theta_0\)为偏置bias,\(\theta_1\)为因变量的权重weight
Cost function 损失函数
需要一个函数评价拟合函数的预测效果如何。直观的,我们可以计算真实房价和预测房价的差值平方和J,J越小预测效果越好。所以,可以通过最小化J可以求出参数\(\theta_0\)和\(\theta_1\)的值。
\[J(\theta_0,\theta_1)=\frac 1 {2m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})^2\]
Gradient descent 梯度下降
这是一个二元函数求极值的问题。可以使用求偏导的方法找出所有极值点,然后代入损失函数求出最小值。一般的做法是采用梯度下降法。梯度下降选择一个系数alpha,和迭代次数。
repeat until convergence {
\[\theta_0 := \theta_0 - \alpha\frac 1 {2m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})\]
\[\theta_1 := \theta_1 - \alpha\frac 1 {2m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})\cdot{x^{(i)}}\]
}
下图是二维梯度下降可视化


通过这种方式可以得出假设的参数。对于已知房子面积的房子就可以使用假设估计房价了。值得一提的是预测的房价不可能是100%准确,但是可以认为是在给定条件下最接近真实房价的值。
注意,梯度下降求的的只是极值点,有可能陷入局部最优,但是对于凸函数,极值点就是最值点,因为极值点只有一个。
LG with multiple variables 多元线性回归
更一般的情况是房价可能由多种因素综合决定,像房子年龄,卧室数目和楼层数。

这时hypothesis变为
\[h_\theta = \theta_0 + \theta_1x_1 + \cdots + \theta_nx_n\]
cost function变为
\[J(\theta_0,\theta_1, \cdots ,\theta_n)=\frac 1 {2m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})^2\] gradient descent变为
\[\theta_j := \theta_j - \alpha\frac 1 {2m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})\cdot{x^{(i)}_j}\]
注意使用feature scaling将不同范围的特征映射到相近的范围。


Polynomial regression多项式回归
更一般的情况是房价和面积是如下图的关系。解决方法转化为多元线性回归。

在这种情况下,一种可能是选择以下特征
\[x_1=size,x_2=(size)^2\]
hypothesis 为
\[h_\theta(x)=\theta_0+\theta_1(size)+\theta_2(size)^2\]
即为
\[h_\theta(x)=\theta_0+\theta_1x_1+\theta_2x_2\]
通过这种方法就可以转换为多元线性回归问题。
Normal Equation
使用多元函数求极值的方法。只是以向量的方式表示。
当除了使用梯度下降外,还可以使用normal equation求参数。

\[X\theta=y\]
解得
\[\theta=(X^TX)^{-1}X^Ty\]
注意当features数多于样本数的情况
解决办法增加样本数,减少特征数,使用normalization
References
Linear Regression 线性回归的更多相关文章
- Spark2 Linear Regression线性回归
回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多重共线性情况下运行良好. 数学上,ElasticNet被定义为L1和L2正则化项的凸组合: 通过适当设置α,Ela ...
- Linear Regression(线性回归)(一)—LMS algorithm
(整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 1.问题的引出 先从一个简单的例子说起吧,房地产公司有一些关于Po ...
- Linear Regression(线性回归)(二)—正规方程(normal equations)
(整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 在上篇博客中,我们提出了线性回归的概念,给出了一种使代价函数最小的 ...
- 线性回归 Linear regression(3) 线性回归的概率解释
这篇博客从一种方式推导了Linear regression 线性回归的概率解释,内容来自Standford公开课machine learning中Andrew老师的讲解. 线性回归的概率解释 在Lin ...
- Kernel Methods (3) Kernel Linear Regression
Linear Regression 线性回归应该算得上是最简单的一种机器学习算法了吧. 它的问题定义为: 给定训练数据集\(D\), 由\(m\)个二元组\(x_i, y_i\)组成, 其中: \(x ...
- 线性回归、梯度下降(Linear Regression、Gradient Descent)
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: ...
- Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression
原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...
- Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- 机器学习之多变量线性回归(Linear Regression with multiple variables)
1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量 ...
随机推荐
- Linux 下查找指令
原文链接:http://www.cnblogs.com/sunleecn/archive/2011/11/01/2232210.html whereis <程序名称>查找软件的安装路径-b ...
- DB错误代码大全
db2错误代码大全 sqlcode sqlstate 说明000 00000 SQL语句成功完成01xxx SQL语句成功完成,但是有警告+012 01545 未限定的列名被解释为一个有相互关系的引 ...
- 实战:ADFS3.0单点登录系列-前置准备
本文为本系列第二篇,主要分为两部分进行介绍, 一.网络拓扑 二.证书制作 还是将本系列目录贴出来,方便导航 实战:ADFS3.0单点登录系列-总览 实战:ADFS3.0单点登录系列-前置准备 实战:A ...
- 网络编程——基于UDP的网络化CPU性能检测
网络化计算机性能检测软件的开发,可对指定目标主机的CPU利用率进行远程检测,并自动对远程主机执行性能指标进行周期性检测,最终实现图形化显示检测结果. 网络通信模块:(客户端类似,因为udp是对等通信) ...
- POJ 1742 Coins(多重背包,优化)
<挑战程序设计竞赛>上DP的一道习题. 很裸的多重背包.下面对比一下方法,倍增,优化定义,单调队列. 一开始我写的倍增,把C[i]分解成小于C[i]的2^x和一个余数r. dp[i][j] ...
- mkfs.xfs 命令找不到的解决方法
对硬盘进行格式化: # mkfs.xfs /dev/sdb1 系统显示: mkfs.xfs error: command not found. 可能是系统不完全安装 运行 which mkfs 查看 ...
- clearerr, feof, ferror, fileno - 检查以及重置流状态
总览 (SYNOPSIS) #include <stdio.h> void clearerr(FILE *stream); int feof(FILE *stream); int ferr ...
- webSocket使用心跳包实现断线重连
首先new一个webscoket的连接 let noticeSocketLink = new WebSocket(‘webSocket的地址’) 这里是连接成功之后的操作 linkNoticeWebs ...
- 通过LDB_PROCESS函数使用逻辑数据库
1.概览 通过LDB_PROCESS函数可以允许任何程序访问逻辑数据库,允许一个程序访问多个逻辑数据库,当然也允许多次连续访问访问同个逻辑数据库.当使用LDB_PROCESS函数来访问逻辑数据库 ...
- Oracle - 存储过程、函数、包的使用练习-雇员
--存储过程范例:得到雇员表 emp 的记录数 begin --说明:若过程中要向外抛异常,请使用 exception when others then raise; 这个抛出的异常在程序里是可以捕获 ...