E. Intergalaxy Trips
time limit per test:2 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output

The scientists have recently discovered wormholes — objects in space that allow to travel very long distances between galaxies and star systems.

The scientists know that there are n galaxies within reach. You are in the galaxy number 1 and you need to get to the galaxy number n. To get from galaxy i to galaxy j, you need to fly onto a wormhole (i, j) and in exactly one galaxy day you will find yourself in galaxy j.

Unfortunately, the required wormhole is not always available. Every galaxy day they disappear and appear at random. However, the state of wormholes does not change within one galaxy day. A wormhole from galaxy i to galaxy j exists during each galaxy day taken separately with probability pij. You can always find out what wormholes exist at the given moment. At each moment you can either travel to another galaxy through one of wormholes that exist at this moment or you can simply wait for one galaxy day to see which wormholes will lead from your current position at the next day.

Your task is to find the expected value of time needed to travel from galaxy 1 to galaxy n, if you act in the optimal way. It is guaranteed that this expected value exists.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 1000) — the number of galaxies within reach.

Then follows a matrix of n rows and n columns. Each element pij represents the probability that there is a wormhole from galaxy i to galaxy j. All the probabilities are given in percents and are integers. It is guaranteed that all the elements on the main diagonal are equal to 100.

Output

Print a single real value — the expected value of the time needed to travel from galaxy 1 to galaxy n if one acts in an optimal way. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Examples
input
3
100 50 50
0 100 80
0 0 100
output
1.750000000000000
input
2
100 30
40 100
output
3.333333333333333
Note

In the second sample the wormhole from galaxy 1 to galaxy 2 appears every day with probability equal to 0.3. The expected value of days one needs to wait before this event occurs is .

题意:

给出一张$n$个点$n^{2}$条边的有向图,每条边每天的出现概率为$p[i][j]$,求从$1$到$n$的期望天数...

分析:

首先我们考虑两个点的情况,也就是第二个样例,从$1$到$2$的边的出现概率为$0.3$,所以我们此时求的期望天数就是期望第几天会出现这条边:$ans=\sum _{i=0}^{+∞}0.7^{i}$,收敛一下就是$\frac {1}{0.3}$...

然后我们再考虑多个点的情况,如果我们要从$i$走到$j$,必须满足的是走到$j$之后的结果要比$i$优,否则就不走...所以我们是每次选取一个最优的点去更新其他的点,这就是一个$dijkstra$的过程,更新的方式就是$f[i]=\frac {(p[i][j_{1}]*f[j_{1}]+(1-p[i][j_{1}])*p[i][j_{2}]*f[j_{2}]+……+1)}{1-(1-p[i][j_{1}])(1-p[i][j_{2}])……}$...

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
//by NeighThorn
using namespace std; const int maxn=1000+5; int n,vis[maxn]; double f[maxn],a[maxn],b[maxn],p[maxn][maxn]; struct M{ int x;
double y; friend bool operator < (M a,M b){
return a.y>b.y;
} M(int a=0,double b=0.0){
x=a;y=b;
} }; priority_queue<M> q; signed main(void){
scanf("%d",&n);
for(int i=1,x;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&x),p[i][j]=x/100.0;
for(int i=1;i<=n;i++)
a[i]=b[i]=1.0,f[i]=1e30;
f[n]=0;q.push(M(n,0));
while(!q.empty()){
int top=q.top().x;q.pop();
if(vis[top])
continue;
vis[top]=1;
for(int i=1;i<=n;i++)
if(p[i][top]>0&&!vis[i]){
a[i]+=b[i]*p[i][top]*f[top];
b[i]*=1.0-p[i][top];
f[i]=a[i]/(1.0-b[i]);
q.push(M(i,f[i]));
}
}
printf("%.15f\n",f[1]);
return 0;
}

  


By NeighThorn

CodeForces 605 E. Intergalaxy Trips的更多相关文章

  1. 【CF605E】Intergalaxy Trips(贪心,动态规划)

    [CF605E]Intergalaxy Trips(贪心,动态规划) 题面 Codeforces 洛谷 有\(n\)个点,每个时刻第\(i\)个点和第\(j\)个点之间有\(p_{ij}\)的概率存在 ...

  2. CF#335 Intergalaxy Trips

     Intergalaxy Trips time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  3. CF605E Intergalaxy Trips

    CF605E Intergalaxy Trips 考虑你是不知道后来的边的出现情况的,所以可以这样做:每天你都选择一些点进行观察,知道某天往这些点里面的某条边可用了,你就往这条边走.这样贪心总是对的. ...

  4. [Codeforces]605E Intergalaxy Trips

    小C比较棘手的概率期望题,感觉以后这样的题还会贴几道出来. Description 给定一个n*n的邻接矩阵,邻接矩阵中元素pi,j表示的是从 i 到 j 这条单向道路在这一秒出现的概率百分比,走一条 ...

  5. Intergalaxy Trips CodeForces - 605E (期望,dijkstra)

    大意: 给定矩阵$p$, $p_{i,j}$表示每一秒点$i$到点$j$有一条边的概率, 每秒钟可以走一条边, 或者停留在原地, 求最优决策下从$1$到$n$的期望用时. $f_x$为从$x$到$n$ ...

  6. CF605E Intergalaxy Trips 贪心 概率期望

    (当时写这篇题解的时候,,,不知道为什么,,,写的非常冗杂,,,不想改了...) 题意:一张有n个点的图,其中每天第i个点到第j个点的边都有$P_{i, j}$的概率开放,每天可以选择走一步或者留在原 ...

  7. E. Intergalaxy Trips

    完全图,\(1 \leq n \leq 1000\)每一天边有 \(p_{i,j}=\frac{A_{i,j}}{100}\) 的概率出现,可以站在原地不动,求 \(1\) 号点到 \(n\) 号点期 ...

  8. [Manthan, Codefest 18][Codeforces 1037E. Trips]

    题目链接:1037E - Trips 题目大意:有n个人,m天,每天晚上都会有一次聚会,一个人会参加一场聚会当且仅当聚会里有至少k个人是他的朋友.每天早上都会有一对人成为好朋友,问每天晚上最多能有多少 ...

  9. Codeforces Round #605 (Div. 3) E - Nearest Opposite Parity

    题目链接:http://codeforces.com/contest/1272/problem/E 题意:给定n,给定n个数a[i],对每个数输出d[i]. 对于每个i,可以移动到i+a[i]和i-a ...

随机推荐

  1. windows 安装nodejs及配置服务

    一.什么是nodejs Node.js是一个Javascript运行环境(runtime).实际上它是对Google V8引擎进行了封装.V8引 擎执行Javascript的速度非常快,性能非常好.N ...

  2. 基于Qt Creator实现中国象棋人机对战, c++实现

    GitHub地址: https://github.com/daleyzou/wobuku 这是自己大一学完c++后,在课程实践中写过的一个程序,实现象棋人机对战的算法还是有点难的, 自己当时差不多也是 ...

  3. 线段树和zkw线段树

    作者作为一个蒟蒻,也是最近才自学了线段树,不对的地方欢迎大佬们评论,但是不要喷谢谢 好啦,我们就开始说说线段树吧 线段树是个支持区间操作和查询的东东,平时的话还是蛮实用的 下面以最基本的区间加以及查询 ...

  4. git线上线下冲突

    今天用git pull来更新代码,遇到了下面的问题: error: Your local changes to the following files would be overwritten by ...

  5. url传参及重定向

    成功跳转$this -> success('提示语',跳转路径,返回的数据,时间,发送的 Header 信息)跳转失败$this -> error('提示语',跳转路径,返回的数据,时间, ...

  6. Java课堂作业

  7. 学习Spring框架系列(一):通过Demo阐述IoC和DI的优势所在

    Spring框架最核心东西便是大名鼎鼎的IoC容器,主要通过DI技术实现.下面我通过Demo的演变过程,对比学习耦合性代码,以及解耦和的过程,并深入理解面向接口编程的真正内涵. 这个例子包括如下几个类 ...

  8. HDU:2594-Simpsons’ Hidden Talents

    Simpsons' Hidden Talents Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...

  9. UVA 10859 Placing Lamppost 树形DP+二目标最优解的求解方案

    题意:给定一个无向,无环,无多重边,要求找出最少的若干点,使得,每条边之中至少有一个点上有街灯.在满足上述条件的时候将还需要满足让两个点被选择的边的数量尽量多. 题解: 对于如何求解最小的节点数目这点 ...

  10. Redis实现之RDB持久化(一)

    RDB持久化 Redis是一个键值对数据库服务器,服务器中通常包含着任意个非空数据库,而每个非空数据库中又可以包含任意个键值对,为了方便起见,我们将服务器中的非空数据库以及它们的键值对统称为数据库状态 ...