E. Intergalaxy Trips
time limit per test:2 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output

The scientists have recently discovered wormholes — objects in space that allow to travel very long distances between galaxies and star systems.

The scientists know that there are n galaxies within reach. You are in the galaxy number 1 and you need to get to the galaxy number n. To get from galaxy i to galaxy j, you need to fly onto a wormhole (i, j) and in exactly one galaxy day you will find yourself in galaxy j.

Unfortunately, the required wormhole is not always available. Every galaxy day they disappear and appear at random. However, the state of wormholes does not change within one galaxy day. A wormhole from galaxy i to galaxy j exists during each galaxy day taken separately with probability pij. You can always find out what wormholes exist at the given moment. At each moment you can either travel to another galaxy through one of wormholes that exist at this moment or you can simply wait for one galaxy day to see which wormholes will lead from your current position at the next day.

Your task is to find the expected value of time needed to travel from galaxy 1 to galaxy n, if you act in the optimal way. It is guaranteed that this expected value exists.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 1000) — the number of galaxies within reach.

Then follows a matrix of n rows and n columns. Each element pij represents the probability that there is a wormhole from galaxy i to galaxy j. All the probabilities are given in percents and are integers. It is guaranteed that all the elements on the main diagonal are equal to 100.

Output

Print a single real value — the expected value of the time needed to travel from galaxy 1 to galaxy n if one acts in an optimal way. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Examples
input
3
100 50 50
0 100 80
0 0 100
output
1.750000000000000
input
2
100 30
40 100
output
3.333333333333333
Note

In the second sample the wormhole from galaxy 1 to galaxy 2 appears every day with probability equal to 0.3. The expected value of days one needs to wait before this event occurs is .

题意:

给出一张$n$个点$n^{2}$条边的有向图,每条边每天的出现概率为$p[i][j]$,求从$1$到$n$的期望天数...

分析:

首先我们考虑两个点的情况,也就是第二个样例,从$1$到$2$的边的出现概率为$0.3$,所以我们此时求的期望天数就是期望第几天会出现这条边:$ans=\sum _{i=0}^{+∞}0.7^{i}$,收敛一下就是$\frac {1}{0.3}$...

然后我们再考虑多个点的情况,如果我们要从$i$走到$j$,必须满足的是走到$j$之后的结果要比$i$优,否则就不走...所以我们是每次选取一个最优的点去更新其他的点,这就是一个$dijkstra$的过程,更新的方式就是$f[i]=\frac {(p[i][j_{1}]*f[j_{1}]+(1-p[i][j_{1}])*p[i][j_{2}]*f[j_{2}]+……+1)}{1-(1-p[i][j_{1}])(1-p[i][j_{2}])……}$...

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
//by NeighThorn
using namespace std; const int maxn=1000+5; int n,vis[maxn]; double f[maxn],a[maxn],b[maxn],p[maxn][maxn]; struct M{ int x;
double y; friend bool operator < (M a,M b){
return a.y>b.y;
} M(int a=0,double b=0.0){
x=a;y=b;
} }; priority_queue<M> q; signed main(void){
scanf("%d",&n);
for(int i=1,x;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&x),p[i][j]=x/100.0;
for(int i=1;i<=n;i++)
a[i]=b[i]=1.0,f[i]=1e30;
f[n]=0;q.push(M(n,0));
while(!q.empty()){
int top=q.top().x;q.pop();
if(vis[top])
continue;
vis[top]=1;
for(int i=1;i<=n;i++)
if(p[i][top]>0&&!vis[i]){
a[i]+=b[i]*p[i][top]*f[top];
b[i]*=1.0-p[i][top];
f[i]=a[i]/(1.0-b[i]);
q.push(M(i,f[i]));
}
}
printf("%.15f\n",f[1]);
return 0;
}

  


By NeighThorn

CodeForces 605 E. Intergalaxy Trips的更多相关文章

  1. 【CF605E】Intergalaxy Trips(贪心,动态规划)

    [CF605E]Intergalaxy Trips(贪心,动态规划) 题面 Codeforces 洛谷 有\(n\)个点,每个时刻第\(i\)个点和第\(j\)个点之间有\(p_{ij}\)的概率存在 ...

  2. CF#335 Intergalaxy Trips

     Intergalaxy Trips time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  3. CF605E Intergalaxy Trips

    CF605E Intergalaxy Trips 考虑你是不知道后来的边的出现情况的,所以可以这样做:每天你都选择一些点进行观察,知道某天往这些点里面的某条边可用了,你就往这条边走.这样贪心总是对的. ...

  4. [Codeforces]605E Intergalaxy Trips

    小C比较棘手的概率期望题,感觉以后这样的题还会贴几道出来. Description 给定一个n*n的邻接矩阵,邻接矩阵中元素pi,j表示的是从 i 到 j 这条单向道路在这一秒出现的概率百分比,走一条 ...

  5. Intergalaxy Trips CodeForces - 605E (期望,dijkstra)

    大意: 给定矩阵$p$, $p_{i,j}$表示每一秒点$i$到点$j$有一条边的概率, 每秒钟可以走一条边, 或者停留在原地, 求最优决策下从$1$到$n$的期望用时. $f_x$为从$x$到$n$ ...

  6. CF605E Intergalaxy Trips 贪心 概率期望

    (当时写这篇题解的时候,,,不知道为什么,,,写的非常冗杂,,,不想改了...) 题意:一张有n个点的图,其中每天第i个点到第j个点的边都有$P_{i, j}$的概率开放,每天可以选择走一步或者留在原 ...

  7. E. Intergalaxy Trips

    完全图,\(1 \leq n \leq 1000\)每一天边有 \(p_{i,j}=\frac{A_{i,j}}{100}\) 的概率出现,可以站在原地不动,求 \(1\) 号点到 \(n\) 号点期 ...

  8. [Manthan, Codefest 18][Codeforces 1037E. Trips]

    题目链接:1037E - Trips 题目大意:有n个人,m天,每天晚上都会有一次聚会,一个人会参加一场聚会当且仅当聚会里有至少k个人是他的朋友.每天早上都会有一对人成为好朋友,问每天晚上最多能有多少 ...

  9. Codeforces Round #605 (Div. 3) E - Nearest Opposite Parity

    题目链接:http://codeforces.com/contest/1272/problem/E 题意:给定n,给定n个数a[i],对每个数输出d[i]. 对于每个i,可以移动到i+a[i]和i-a ...

随机推荐

  1. 关于java中异常机制

    什么是异常:异常就是程序在运行时出现的不正常情况.对于严重的情况Java通过Error类进行描述,一般不用编写代码处理:对于不严重的情况Java通过Exception描述,一般编写针对性代码对其进行处 ...

  2. Oracle数据库学习(三)

    6.关于null 数据库中null是一个未知数,没有任何值:进行运算时使用nvl,但是结果仍为空:在聚集函数中只有全部记录为空才会返回null. 7.insert插入 (1)单行记录插入 insert ...

  3. MySQL-Xtrabackup备份还原

    前言 通常我们都是使用xtrabackup工具来备份数据库,它是一个专业的备份工具,先来简单介绍下它. Xtrabackup percona提供的mysql数据库备份工具,惟一开源的能够对innodb ...

  4. 将Web项目War包部署到Tomcat服务器基本步骤(完整版)

    1. 常识:   1.1 War包 War包一般是在进行Web开发时,通常是一个网站Project下的所有源码的集合,里面包含前台HTML/CSS/JS的代码,也包含Java的代码. 当开发人员在自己 ...

  5. 自动化运维之使用Python3收发电子邮件~~~附源码

    一.背景介绍   1.1  一些专业名称的解释 MUA——Mail User Agent,邮件用户代理.是用户与电子邮件系统的交互接口,一般来说它就是我们PC机上的一个程序,提供一个好的用户界面,它提 ...

  6. Codeforces Round #460 (Div. 2)-A. Supermarket

    A. Supermarket time limit per test2 seconds memory limit per test256 megabytes Problem Description W ...

  7. 按位与&、或|、异或^等运算方法

    (转载) 按位与运算符(&) 参加运算的两个数据,按二进制位进行“与”运算. 运算规则:0&0=0;   0&1=0;    1&0=0;     1&1=1; ...

  8. Kubernetes配置Ceph RBD StorageClass

    1. 在Ceph上为Kubernetes创建一个存储池 # ceph osd pool create k8s 2. 创建k8s用户 # ceph auth get-or-create client.k ...

  9. Diycode开源项目 NotificationActivity

    1.NotificationActivity预览以及布局详解 1.1.首先看一下通知的具体页面. 1.2.然后是布局代码==>activity_fragment.xml <LinearLa ...

  10. heap&stack的区别

    1. heap (堆)是一个可动态申请的内存空间,一般所有创建的对象和数组都放在这里.stack (栈)是一个先进后出的数据结构,通常用于保存方法(函数)中的参数,局部变量.stack (栈)的空间小 ...