【离线做法 树状数组】luoguP1972 [SDOI2009]HH的项链
与bzoj3585: mex的线段树做法有着异曲同工之妙
题目描述
HH 有一串由各种漂亮的贝壳组成的项链。HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义。HH 不断地收集新的贝壳,因此,他的项链变得越来越长。有一天,他突然提出了一个问题:某一段贝壳中,包含了多少种不同的贝壳?这个问题很难回答……因为项链实在是太长了。于是,他只好求助睿智的你,来解决这个问题。
输入输出格式
输入格式:
第一行:一个整数N,表示项链的长度。
第二行:N 个整数,表示依次表示项链中贝壳的编号(编号为0 到1000000 之间的整数)。
第三行:一个整数M,表示HH 询问的个数。
接下来M 行:每行两个整数,L 和R(1 ≤ L ≤ R ≤ N),表示询问的区间。
输出格式:
M 行,每行一个整数,依次表示询问对应的答案。
输入输出样例
6
1 2 3 4 3 5
3
1 2
3 5
2 6
2
2
4
说明
数据范围:
对于100%的数据,N <= 500000,M <= 200000。
题目分析
很早就了解到这道“莫队板子题”有树状数组解法然而迟迟没有学习……
显然答案是可减的,而且无论在区间外的答案和不合法,都不会影响区间内的答案。
这里有算是一种套路或是技巧:用$nxt[i]$表示下一个与$i$同性质的元素位置;那么删去$i$后就可以在$nxt[i]$的位置将答案+1表示此处多了一个新的元素(对于询问的区间来说$nxt[i]$的确是新元素)。
瞬间想起一起糊里糊涂写过的一道bzoj3585mex的线段树做法;算是对于这种套路有更深的理解了吧。
#include<bits/stdc++.h>
const int maxn = ;
const int maxm = ;
const int maxc = ; struct QRs
{
int l,r,id;
bool operator < (QRs a) const
{
return l < a.l;
}
}q[maxm];
int col[maxc],lst[maxc],nxt[maxn];
int ans[maxm];
int f[maxn];
int n,m,mx; int lowbit(int x){return x&-x;}
void add(int x){for (; x<=n; x+=lowbit(x)) f[x]++;}
int query(int x)
{
int ret = ;
for (; x; x-=lowbit(x)) ret += f[x];
return ret;
}
int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
int main()
{
n = read();
for (int i=; i<=n; i++) col[i] = read();
for (int i=n; i>=; i--)
{
if (lst[col[i]]==) lst[col[i]] = n+;
nxt[i] = lst[col[i]], lst[col[i]] = i;
}
for (int i=; i<=n; i++)
if (lst[col[i]]) add(i), lst[col[i]] = ;
m = read();
for (int i=; i<=m; i++) q[i].l = read(), q[i].r = read(), q[i].id = i;
std::sort(q+, q+m+);
int now = ;
for (int i=; i<=m; i++)
{
while (now < q[i].l)
{
if (nxt[now]) add(nxt[now]);
now++;
}
ans[q[i].id] = query(q[i].r)-query(q[i].l-);
}
for (int i=; i<=m; i++)
printf("%d\n",ans[i]);
return ;
}
END
【离线做法 树状数组】luoguP1972 [SDOI2009]HH的项链的更多相关文章
- [luoguP1972] [SDOI2009]HH的项链(莫队 || 树状数组 || 主席树)
传送门 莫队基础题,适合我这种初学者. 莫队是离线算法,通常不带修改,时间复杂度为 O(n√n) 我们要先保证通过 [ l , r ] 求得 [ l , r + 1 ] , [ l , r - 1 ] ...
- 【loj6041】「雅礼集训 2017 Day7」事情的相似度 后缀自动机+STL-set+启发式合并+离线+扫描线+树状数组
题目描述 给你一个长度为 $n$ 的01串,$m$ 次询问,每次询问给出 $l$ .$r$ ,求从 $[l,r]$ 中选出两个不同的前缀的最长公共后缀长度的最大值. $n,m\le 10^5$ 题解 ...
- 【bzoj4540】[Hnoi2016]序列 单调栈+离线+扫描线+树状数组区间修改区间查询
题目描述 给出一个序列,多次询问一个区间的所有子区间最小值之和. 输入 输入文件的第一行包含两个整数n和q,分别代表序列长度和询问数.接下来一行,包含n个整数,以空格隔开,第i个整数为ai,即序列第i ...
- BZOJ1878: [SDOI2009]HH的项链 (离线查询+树状数组)
1878: [SDOI2009]HH的项链 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1878 Description: HH有一串由 ...
- HDU 4746 莫比乌斯反演+离线查询+树状数组
题目大意: 一个数字组成一堆素因子的乘积,如果一个数字的素因子个数(同样的素因子也要多次计数)小于等于P,那么就称这个数是P的幸运数 多次询问1<=x<=n,1<=y<=m,P ...
- 洛谷P3246 [HNOI2016]序列(离线 差分 树状数组)
题意 题目链接 Sol 好像搞出了一个和题解不一样的做法(然而我考场上没写出来还是爆零0) 一个很显然的思路是考虑每个最小值的贡献. 预处理出每个数左边第一个比他小的数,右边第一个比他大的数. 那么\ ...
- hdu-3333 Turing Tree 离线区间+树状数组(区间不同数的和)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3333 题目大意: 给出一数组,以及m个查询区间,每次查询该区间不同数字的和.相同数字只加一次. 解题 ...
- codeforces 703D Mishka and Interesting sum 偶数亦或 离线+前缀树状数组
题目传送门 题目大意:给出n个数字,m次区间询问,每一次区间询问都是询问 l 到 r 之间出现次数为偶数的数 的亦或和. 思路:偶数个相同数字亦或得到0,奇数个亦或得到本身,那么如果把一段区间暴力亦或 ...
- ACdream 1127 Base Station (离线查询+树状数组)
题目链接: http://acdream.info/problem?pid=1127 题目: 移动通信系统中,通信网的建立主要通过基站来完成. 基站可以分为主基站和子基站.子基站和各个移动用户进行连接 ...
随机推荐
- perl 操作文件指针
之前使用perl 脚本写了一个读取文件的小工具,但是由于当时使用的Tie 的方式,在处理大文件时,效率并不十分理想,所以在网上搜索了perl 如何操作文件指针的文章,自己也学习一下,本博客就是学习过程 ...
- RobotFramework特性总结
robotframework是一款python编写的功能自动化测试框架.具备良好的可扩展性,支持关键字驱动,可以同时编写多种类型的客户端或者接口,可以进行分布式测试执行.主要用户轮次很多的验收测试和验 ...
- seq(2018.10.24)
一道\(dp\)题... 期望\(40\)分解法 预处理:离散化,然后让连续一段值相同的元素合并为一个元素. 正式\(DP\): 显然有个最差策略为每个元素处都切一次,则切的次数为元素的个数\(-1\ ...
- SpringBoot | SpringBoot启动错误
Error starting ApplicationContext. To display the conditions report re-run your application with 'de ...
- 学习java设计模式的必要性探讨
1.设计模式是什么:设计模式为我们提供了一套可复用的面向对象技术,再配合重构方法,可以让我们避免简单重复的工作.它使用面向接口编程,而不是面向实现.可以说设计模式是java程序设计的灵魂. 2.为什么 ...
- 洛谷 P2231 [HNOI2002]跳蚤
https://www.luogu.org/problemnew/show/P2231 题意相当于:有n个位置a[1..n],每个位置可以填[1,m]中任一个整数,问共有多少种填法满足gcd(a[1] ...
- 解决Centos下SSH登录慢的问题
产生这个问题的原因是:server的sshd会去DNS查找访问client IP的hostname,如果DNS不可用或者没有相关的记录就会花费大量的时间. 1.在server上/etc/hosts文件 ...
- 如何正确在IDEA 里非maven或非SBT构建的项目中引入lib的jar包(图文详解)
以下是我,手动的一个项目 假设,大家,还需要导入 导入spark的jar包:是安装主目录下的jars所有jar包和examples/jars包.
- Java运算符——通过示例学习Java编程(6)
作者:CHAITANYA SINGH 来源:https://www.koofun.com/pro/kfpostsdetail?kfpostsid=17 运算符是表示动作的字符,例如+是表示加法的算 ...
- BootStrap的基本使用
bootstrap 现成的css样式,直接调用类作用是快速写出页面又称UI框架Bootstrap中文网LESS是预处理器CSS预处理器定义了一种新的语言,基本的思想是用一种专门的编程语言,开发者只需要 ...