bzoj3585: mex的线段树做法有着异曲同工之妙

题目描述

HH 有一串由各种漂亮的贝壳组成的项链。HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义。HH 不断地收集新的贝壳,因此,他的项链变得越来越长。有一天,他突然提出了一个问题:某一段贝壳中,包含了多少种不同的贝壳?这个问题很难回答……因为项链实在是太长了。于是,他只好求助睿智的你,来解决这个问题。

输入输出格式

输入格式:

第一行:一个整数N,表示项链的长度。

第二行:N 个整数,表示依次表示项链中贝壳的编号(编号为0 到1000000 之间的整数)。

第三行:一个整数M,表示HH 询问的个数。

接下来M 行:每行两个整数,L 和R(1 ≤ L ≤ R ≤ N),表示询问的区间。

输出格式:

M 行,每行一个整数,依次表示询问对应的答案。

输入输出样例

输入样例#1:

6
1 2 3 4 3 5
3
1 2
3 5
2 6
输出样例#1:

2
2
4

说明

数据范围:

对于100%的数据,N <= 500000,M <= 200000。


题目分析

很早就了解到这道“莫队板子题”有树状数组解法然而迟迟没有学习……

显然答案是可减的,而且无论在区间外的答案和不合法,都不会影响区间内的答案。

这里有算是一种套路或是技巧:用$nxt[i]$表示下一个与$i$同性质的元素位置;那么删去$i$后就可以在$nxt[i]$的位置将答案+1表示此处多了一个新的元素(对于询问的区间来说$nxt[i]$的确是新元素)。

瞬间想起一起糊里糊涂写过的一道bzoj3585mex的线段树做法;算是对于这种套路有更深的理解了吧。

 #include<bits/stdc++.h>
const int maxn = ;
const int maxm = ;
const int maxc = ; struct QRs
{
int l,r,id;
bool operator < (QRs a) const
{
return l < a.l;
}
}q[maxm];
int col[maxc],lst[maxc],nxt[maxn];
int ans[maxm];
int f[maxn];
int n,m,mx; int lowbit(int x){return x&-x;}
void add(int x){for (; x<=n; x+=lowbit(x)) f[x]++;}
int query(int x)
{
int ret = ;
for (; x; x-=lowbit(x)) ret += f[x];
return ret;
}
int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
int main()
{
n = read();
for (int i=; i<=n; i++) col[i] = read();
for (int i=n; i>=; i--)
{
if (lst[col[i]]==) lst[col[i]] = n+;
nxt[i] = lst[col[i]], lst[col[i]] = i;
}
for (int i=; i<=n; i++)
if (lst[col[i]]) add(i), lst[col[i]] = ;
m = read();
for (int i=; i<=m; i++) q[i].l = read(), q[i].r = read(), q[i].id = i;
std::sort(q+, q+m+);
int now = ;
for (int i=; i<=m; i++)
{
while (now < q[i].l)
{
if (nxt[now]) add(nxt[now]);
now++;
}
ans[q[i].id] = query(q[i].r)-query(q[i].l-);
}
for (int i=; i<=m; i++)
printf("%d\n",ans[i]);
return ;
}

END

【离线做法 树状数组】luoguP1972 [SDOI2009]HH的项链的更多相关文章

  1. [luoguP1972] [SDOI2009]HH的项链(莫队 || 树状数组 || 主席树)

    传送门 莫队基础题,适合我这种初学者. 莫队是离线算法,通常不带修改,时间复杂度为 O(n√n) 我们要先保证通过 [ l , r ] 求得 [ l , r + 1 ] , [ l , r - 1 ] ...

  2. 【loj6041】「雅礼集训 2017 Day7」事情的相似度 后缀自动机+STL-set+启发式合并+离线+扫描线+树状数组

    题目描述 给你一个长度为 $n$ 的01串,$m$ 次询问,每次询问给出 $l$ .$r$ ,求从 $[l,r]$ 中选出两个不同的前缀的最长公共后缀长度的最大值. $n,m\le 10^5$ 题解 ...

  3. 【bzoj4540】[Hnoi2016]序列 单调栈+离线+扫描线+树状数组区间修改区间查询

    题目描述 给出一个序列,多次询问一个区间的所有子区间最小值之和. 输入 输入文件的第一行包含两个整数n和q,分别代表序列长度和询问数.接下来一行,包含n个整数,以空格隔开,第i个整数为ai,即序列第i ...

  4. BZOJ1878: [SDOI2009]HH的项链 (离线查询+树状数组)

    1878: [SDOI2009]HH的项链 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1878 Description: HH有一串由 ...

  5. HDU 4746 莫比乌斯反演+离线查询+树状数组

    题目大意: 一个数字组成一堆素因子的乘积,如果一个数字的素因子个数(同样的素因子也要多次计数)小于等于P,那么就称这个数是P的幸运数 多次询问1<=x<=n,1<=y<=m,P ...

  6. 洛谷P3246 [HNOI2016]序列(离线 差分 树状数组)

    题意 题目链接 Sol 好像搞出了一个和题解不一样的做法(然而我考场上没写出来还是爆零0) 一个很显然的思路是考虑每个最小值的贡献. 预处理出每个数左边第一个比他小的数,右边第一个比他大的数. 那么\ ...

  7. hdu-3333 Turing Tree 离线区间+树状数组(区间不同数的和)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3333 题目大意: 给出一数组,以及m个查询区间,每次查询该区间不同数字的和.相同数字只加一次. 解题 ...

  8. codeforces 703D Mishka and Interesting sum 偶数亦或 离线+前缀树状数组

    题目传送门 题目大意:给出n个数字,m次区间询问,每一次区间询问都是询问 l 到 r 之间出现次数为偶数的数 的亦或和. 思路:偶数个相同数字亦或得到0,奇数个亦或得到本身,那么如果把一段区间暴力亦或 ...

  9. ACdream 1127 Base Station (离线查询+树状数组)

    题目链接: http://acdream.info/problem?pid=1127 题目: 移动通信系统中,通信网的建立主要通过基站来完成. 基站可以分为主基站和子基站.子基站和各个移动用户进行连接 ...

随机推荐

  1. windows如何搭建redis集群

    操作系统:win10 64位 redis版本:3.2.1-x64 ruby版本:2.5.1-1-x64 rubygems版本:2.7.6 今天突然想简单的搭建一个redis的集群,因为系统是Windo ...

  2. ZK的选举算法

    一.前言 前面学习了Zookeeper服务端的相关细节,其中对于集群启动而言,很重要的一部分就是Leader选举,接着就开始深入学习Leader选举. 二.Leader选举 2.1 Leader选举概 ...

  3. kuangbin大佬的高斯消元模板

    dalao解释的博客 #include <bits/stdc++.h> using namespace std; ; int a[MAXN][MAXN];//增广矩阵 int x[MAXN ...

  4. mongodb数据库下载链接,相关配置(转载),官方api

    下载链接:http://dl.mongodb.org/dl/win32/x86_64 配置:http://blog.sina.com.cn/s/blog_685213e70101g81t.html 官 ...

  5. JQ Ajax 同步与异步的区别

    $.ajax({ url: xml_addr, type: 'get', dataType: 'xml', timeout: 1000, //设定超时 cache: false, //禁用缓存 asy ...

  6. JTable运行的时候抛出NullPointerException的问题

    在一个需要动态更新JTable的程序中,为了实现动态刷修数据.在主线程之外开了个新线程来进行算法的执行还有数值计算,然后最后调用 jTable.updateUi(); 的方法. 然后图形界面上是一点问 ...

  7. 我的NopCommerce之旅(9): 编写Plugin实例

    一.基础介绍 ——In computing, a plug-in (or plugin) is a set of software components that add specific abili ...

  8. node+express第一次实战踩坑记录

    读万卷书不如行万里路,必须实践出真理! 问题1:项目结构该搭建成什么样? 我一个node.js小白,完全没有想法!再见! 找找别人的项目看看别人放的什么项目结构,再结合自己的项目需求我来想想!

  9. spring boot & mybatis集合的坑

    因为是使用的mybatis逆向工程自动生成的实体类和dao层,然后在读取某一个表的content字段时出现问题. 问题描述:在mysql数据库里可以直接查询到这个字段的内容,但是使用java相关的方法 ...

  10. UIView和Masonry实现动画效果

    Masonry 实现动画效果如下: //button点击方法 - (void)clickedButton { static BOOL isMove; //默认是NO Weakify(weakSelf) ...