A - Breadth-First Search by Foxpower

Time Limit:2000MS     Memory Limit:131072KB     64bit IO Format:%lld & %llu

Submit Status

Description

A - Breadth-First Search by Foxpower

Problem Statement

Fox Ciel went to JAG Kingdom by bicycle, but she forgot a place where she parked her bicycle. So she needs to search it from a bicycle-parking area before returning home.

The parking area is formed as a unweighted rooted tree TT with nn vertices, numbered 11 through nn. Each vertex has a space for parking one or more bicycles. Ciel thought that she parked her bicycle near the vertex 11, so she decided to search it from there by the breadth-first search. That is, she searches it at the vertices in the increasing order of their distances from the vertex 11. If multiple vertices have the same distance, she gives priority to the vertices in the order of searching at their parents. If multiple vertices have the same parent, she searches at the vertex with minimum number at first.

Unlike a computer, she can't go to a next vertex by random access. Thus, if she goes to the vertex jj after the vertex ii, she needs to walk the distance between the vertices ii and jj. BFS by fox power perhaps takes a long time, so she asks you to calculate the total moving distance in the worst case starting from the vertex 11.

Input

The input is formatted as follows.

nn 
p2p2 p3p3 p4p4 ⋯⋯ pnpn

The first line contains an integer nn (1≤n≤1051≤n≤105), which is the number of vertices on the unweighted rooted tree TT. The second line contains n−1n−1 integers pipi (1≤pi<i1≤pi<i), which are the parent of the vertex ii. The vertex 11 is a root node, so p1p1 does not exist.

Output

Print the total moving distance in the worst case in one line.

Sample Input 1

4
1 1 2

Output for the Sample Input 1


Sample Input 2

4
1 1 3

Output for the Sample Input 2


Sample Input 3

11
1 1 3 3 2 4 1 3 2 9

Output for the Sample Input

25

题意:一有一棵树,直接相连的节点之间的距离均为1,一个人站在根节点,从深度从低到高搜索,从每次只能把同一深度的搜索完了才能向下一层搜索,问至少需要经过多少距离才能把所有节点都访问一遍
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <algorithm>
#include <set>
using namespace std;
typedef long long ll;
typedef unsigned long long Ull;
#define MM(a,b) memset(a,b,sizeof(a));
const double eps = 1e-10;
const int inf =0x7f7f7f7f;
const double pi=acos(-1);
const int maxn=100000+10;
int c[maxn][22],deep[maxn],vis[maxn];
vector<vector<int> > G(maxn); void dfs(int u,int par)
{
c[u][0]=par;
for(int i=1;i<=20;i++) c[u][i]=c[c[u][i-1]][i-1];
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(v==par) continue;
deep[v]=deep[u]+1;
dfs(v,u);
}
} int lca(int u,int v)
{
if(deep[u]<deep[v]) swap(u,v);
for(int i=20;i>=0;i--)
if(deep[c[u][i]]>=deep[v])
u=c[u][i];
if(u==v) return u;
for(int i=20;i>=0;i--)
if(c[u][i]^c[v][i])
{
u=c[u][i];
v=c[v][i];
}
return c[u][0];
} int dis(int u,int v)
{
return deep[u]+deep[v]-2*deep[lca(u,v)];
} int main()
{
int n;
while(~scanf("%d",&n))
{
for(int i=1;i<=n;i++) G[i].clear();
deep[1]=0;
for(int i=2;i<=n;i++)
{
int x;scanf("%d",&x);
G[x].push_back(i);
}
dfs(1,1);
int pre=1;ll ans=0;
queue<int> q;
q.push(1);
while(q.size())
{
int u=q.front();q.pop();
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
ans+=dis(pre,v);
pre=v;
q.push(v);
}
}
printf("%lld\n",ans);
}
return 0;
}

  分析:LCA倍增法的第一题,需要设置一个pre代表先前处于哪个位置,然后对于当前需要访问的节点u,求pre和u之间的距离就好,通过lca来求

 

TTTTTTTTTTTTTTTT #7 div1 A Breadth-First Search by Foxpower 在线LCA(倍增),模拟的更多相关文章

  1. 广度优先搜索(Breadth First Search, BFS)

    广度优先搜索(Breadth First Search, BFS) BFS算法实现的一般思路为: // BFS void BFS(int s){ queue<int> q; // 定义一个 ...

  2. Aizu 2677 Breadth-First Search by Foxpower LCA+bfs

    A - Breadth-First Search by Foxpower Problem Statement Fox Ciel went to JAG Kingdom by bicycle, but ...

  3. 广度优先搜索(Breadth First Search)

    Date:2019-07-03 14:29:02 走完一层的所有房间,再走下一层,用队列实现 算法实现 /*--------------------------模版------------------ ...

  4. [Algorithm] Breadth First JavaScript Search Algorithm for Graphs

    Breadth first search is a graph search algorithm that starts at one node and visits neighboring node ...

  5. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  6. [Algorithm] Write a Depth First Search Algorithm for Graphs in JavaScript

    Depth first search is a graph search algorithm that starts at one node and uses recursion to travel ...

  7. C#算法知识点记录

    针对算法的知识点进行记录 简易桶排序 首先看一个简易桶排序,有一串数字,进行从大到小排列.数字间隔不大,使用一维数组来当作桶,进行插入排序. static void Main(string[] arg ...

  8. 译:Boost Property Maps

    传送门:Boost Graph Library 快速入门 原文:Boost Property Map 图的抽象数学性质与它们被用来解决具体问题之间的主要联系就是被附加在图的顶点和边上的属性(prope ...

  9. 分支界定法 branch-and-bound 分析与实现)(转载)

    1. 介绍分支界定法之前需要了解一下广度优先搜索breadth-First-search(BFS) 1.从图中某个顶点V0出发,并访问此顶点:以层为顺序,一层一层往下遍历 2.从V0出发,访问V0的各 ...

随机推荐

  1. python基础知识0-4

    collection 他是对字典 元组 集合 进行加工的  是计数器 无论 深 ,浅 ,赋值 拷贝 内存地址都不变 赋值也是拷贝的一种 拷贝分两类数字 字符串 另一类: 列表 字典 元组 这一类还分两 ...

  2. 树莓派安装Firefox+Selenium+geckodriver

    相关参考博客[Selenium]Raspbian+Selenium+Firefoxfirefox.geckodriver.exe.selenium-server-standlone版本对应及下载地址树 ...

  3. 1-Perl 简介

    Perl 是 Practical Extraction and Report Language 的缩写,可翻译为 "实用报表提取语言".Perl 是高级.通用.直译式.动态的程序语 ...

  4. git的常用指令(二) git add -A 、git add . 和 git add -u

    git add . :他会监控工作区的状态树,使用它会把工作时的所有变化提交到暂存区,包括文件内容修改(modified)以及新文件(new),但不包括被删除的文件. git add -u :他仅监控 ...

  5. 【原创】大叔经验分享(65)spark读取不到hive表

    spark 2.4.3 spark读取hive表,步骤: 1)hive-site.xml hive-site.xml放到$SPARK_HOME/conf下 2)enableHiveSupport Sp ...

  6. 移动端真机debug调试神器 vConsole学习(一)之基础

    参考 使用方法 移动端真机debug调试神器 vConsole的引入说明(原生态与WebPack) 移动端使用vconsole调试console vConsole ——开源的前端 console 调试 ...

  7. 关于MySQL的索引的几件小事

    零.索引简介 1. 索引是什么 ①MySQL官方对索引的定义是:索引(Index)是帮助MySQL高效获取数据的数据结构. ②可以简单的理解为"排好序的快速查找数据结构". ③除了 ...

  8. Semaphore拿到执行权的线程之间是否互斥

    java线程之间的控制,使用Semaphore 实现 互斥 下面我们通过Semaphore来实现一个比较好的互斥操作: package com.zhy.concurrency.semaphore; i ...

  9. JVM学习笔记(一):Java虚拟机和虚拟机内存区域

    为什么Java程序需要运行在虚拟机上 因为Java在设计之初的跨平台特性,我们知道Java程序是运行在Java虚拟机上的.如果你要问为什么Java程序要运行在虚拟机上,我可以反问你几个问题. 为什么买 ...

  10. UE中正则表达式

    UltraEdit(后简称UE),是我经常使用的文本编辑软件,其功能的强大,令我由衷地爱上了它.每天不用就全身不爽.从最开始的9.0到现在的 12.10a(本人只用到这个版本),UE都是系统重装后必安 ...