笛卡尔树 (25 分)

笛卡尔树是一种特殊的二叉树,其结点包含两个关键字K1和K2。首先笛卡尔树是关于K1的二叉搜索树,即结点左子树的所有K1值都比该结点的K1值小,右子树则大。其次所有结点的K2关键字满足优先队列(不妨设为最小堆)的顺序要求,即该结点的K2值比其子树中所有结点的K2值小。给定一棵二叉树,请判断该树是否笛卡尔树。

输入格式:

输入首先给出正整数N(≤1000),为树中结点的个数。随后N行,每行给出一个结点的信息,包括:结点的K1值、K2值、左孩子结点编号、右孩子结点编号。设结点从0~(N-1)顺序编号。若某结点不存在孩子结点,则该位置给出−1。

输出格式:

输出YES如果该树是一棵笛卡尔树;否则输出NO

输入样例1:

6
8 27 5 1
9 40 -1 -1
10 20 0 3
12 21 -1 4
15 22 -1 -1
5 35 -1 -1

输出样例1:

YES

输入样例2:

6
8 27 5 1
9 40 -1 -1
10 20 0 3
12 11 -1 4
15 22 -1 -1
50 35 -1 -1

输出样例2:

NO

笛卡尔树的性质:

1.如果只含key值,不含value值的话,此树就像是一颗二叉搜索树。性质和二叉搜索树的性质是一样的,从左子树到右子树依次变大。而val值的意思正好和key值的意思相反。

2.笛卡尔树的以key值为准,中序遍历出的key值必须是从小到大的(不能相等)。

#include<iostream>
#include<cstdio>
#include<vector> using namespace std; struct node
{
int key;
int val;
int lchild;
int rchild;
}a[]; int vis[],flag,ans[],cnt=; void fun(int root)
{
if(!flag) //减少不必要的递归,节约时间
return ;
if(a[root].lchild!=-) //如果左孩子不为-1,则进行下一步操作
{
int left=a[root].lchild;
if(a[left].key>=a[root].key) //假如该位置的前一个左孩子大于或者等于该位置的key值 //
{ //则将flag赋值为flase
flag=;
return ;
}
fun(left);
}
if(a[root].rchild!=-) //同上,就是该位置的前一个右孩子小于或者等于该位置的val值
{
int right=a[root].rchild;
if(a[right].val<=a[root].val)
{
flag=;
return ;
}
fun(right);
}
} void in_order(int root)//中序遍历此树
{
if(root!=-)
{
in_order(a[root].lchild);
ans[cnt++]=a[root].key;
in_order(a[root].rchild);
}
} int main()
{
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%d%d%d%d",&a[i].key,&a[i].val,&a[i].lchild,&a[i].rchild);
if(a[i].lchild!=-) //记录所有出现的结点,没出现的那个节点就是根节点
vis[a[i].lchild]=;
if(a[i].rchild!=-)
vis[a[i].rchild]=;
}
int root=-;
for(int i=;i<n;i++) //找出根节点
if(!vis[i])
{
root=i;
break; //记住跳出,减少没有必要的循环
}
if(root==-) //判断此树是否为空树
{
printf("YES\n");
return ;
}
flag=; //如果为true则是笛卡尔树,否则不是
fun(root); //递归判断此树
in_order(root); //中序遍历
for(int i=;i<cnt-;i++) //判断中序遍历出的key值是否符合二叉搜索树的性质(从小到大)
if(ans[i]>=ans[i+])
{
flag=;
break;
}
if(flag)
printf("YES\n");
else
printf("NO\n");
return ;
}

PTA 笛卡尔树的更多相关文章

  1. codevs2178 表达式运算Cuties[笛卡尔树]

    2178 表达式运算Cuties  时间限制: 1 s  空间限制: 32000 KB  题目等级 : 大师 Master 题解  查看运行结果     题目描述 Description 给出一个表达 ...

  2. POJ 2559 Largest Rectangle in a Histogram ——笛卡尔树

    [题目分析] 本来是单调栈的题目,用笛卡尔树可以快速的水过去. 把每一个矩阵看成一个二元组(出现的顺序,高度). 然后建造笛卡尔树. 神奇的发现,每一个节点的高度*该子树的大小,就是这一块最大的子矩阵 ...

  3. NOIP2011pj表达式的值[树形DP 笛卡尔树 | 栈 表达式解析]

    题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算.例如:计算表达式A⊕B × ...

  4. POJ 2201 Cartesian Tree ——笛卡尔树

    [题目分析] 构造一颗笛卡尔树,然后输出这棵树即可. 首先进行排序,然后用一个栈维护最右的树的节点信息,插入的时候按照第二关键字去找,找到之后插入,下面的树成为它的左子树即可. 然后插入分三种情况讨论 ...

  5. POJ 1785 Binary Search Heap Construction(裸笛卡尔树的构造)

    笛卡尔树: 每个节点有2个关键字key.value.从key的角度看,这是一颗二叉搜索树,每个节点的左子树的key都比它小,右子树都比它大:从value的角度看,这是一个堆. 题意:以字符串为关键字k ...

  6. [BZOJ]4199: [Noi2015]品酒大会(后缀数组+笛卡尔树)

    Time Limit: 10 Sec  Memory Limit: 512 MB Description Input Output Sample Input 10 ponoiiipoi 2 1 4 7 ...

  7. [模板] 笛卡尔树 && RMQ

    话说我noip之前为什么要学这种东西... 简介 笛卡尔树(Cartesian Tree) 是一种二叉树, 且同时具有以下两种性质: 父亲节点的值大于/小于子节点的值; 中序遍历的结果为原序列. 笛卡 ...

  8. BZOJ.2616.SPOJ PERIODNI(笛卡尔树 树形DP)

    BZOJ SPOJ 直观的想法是构建笛卡尔树(每次取最小值位置划分到两边),在树上DP,这样两个儿子的子树是互不影响的. 令\(f[i][j]\)表示第\(i\)个节点,放了\(j\)个车的方案数. ...

  9. BZOJ2616 SPOJ PERIODNI(笛卡尔树+树形dp)

    考虑建一棵小根堆笛卡尔树,即每次在当前区间中找到最小值,以最小值为界分割区间,由当前最小值所在位置向两边区间最小值所在位置连边,递归建树.那么该笛卡尔树中的一棵子树对应序列的一个连续区间,且根的权值是 ...

随机推荐

  1. 非常简约学生管理系统——HashSet进行编写

    很小的一个练习,可以参考一下啊~~~~~~ 1:注意:学生类中进行多个重要方法的重写 package com.xt.homework; public class Student { private S ...

  2. asp.net 4.Redirect重定向和文件图片上传

    1.Response.Redirect 如图所示: 1.用户点击修改按钮, 浏览器向服务器发送一个POST请求 http://localhost:6543/UpdateUser.ashx 2.服务器的 ...

  3. C#面向对象13 文件类操作 Path/File/FileStream

    1.path using System; using System.Collections.Generic; using System.Linq; using System.Text; using S ...

  4. JavaSE基础知识之多态

    一. 概述 多态是继封装.继承之后,面向对象的第三大特性,指同一行为,具有多个不同表现形式.生活中,比如跑的动作,小猫.小狗和大象,跑起来是不一样的.再比如飞的动作,昆虫.鸟类和飞机,飞起来也是不一样 ...

  5. idea 党用快捷键

    实用快捷键: Ctrl+/ 或 Ctrl+Shift+/ 注释(// 或者/*...*/ )Ctrl+D 复制行Ctrl+X 删除行快速修复 alt+enter (modify/cast)代码提示 a ...

  6. get获取后台数据

    let url = $.getCookie('prefixUrl')+'/currencyRatesManage/getCurrency'; let vm=this; $.ajax({ url: ur ...

  7. JavaMaven【五、Maven集成Eclipse使用】

    创建Maven项目 右键->new->other(Ctrl+n)->Maven Project->quickStart(catalog) 执行指令 右键->Run As- ...

  8. tomcat8.5打开manager页面报错的问题

    之前用的8.0版本的tomcat,最近需要将版本升级,当前8的最新的版本是8.5.42,升级之后发现manager页面打不开了,就是下面这个按钮的页面 点击之后报403没权的错误 还是按照8.0版本的 ...

  9. Tarjan无向图的割点和桥(割边)全网详解&算法笔记&通俗易懂

    更好的阅读体验&惊喜&原文链接 感谢@yxc的腿部挂件 大佬,指出本文不够严谨的地方,万分感谢! Tarjan无向图的割点和桥(割边) 导言 在掌握这个算法前,咱们有几个先决条件. [ ...

  10. Python中的操作符及优先级

    附注: 1.  Python中的按位运算符是把数字看作二进制来进行计算的.Python中的按位运算法则如下: 按位与   ( bitwise and of x and y ) &  举例: 5 ...