Leetcode之动态规划(DP)专题-198. 打家劫舍(House Robber)
Leetcode之动态规划(DP)专题-198. 打家劫舍(House Robber)
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。
示例 1:
输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:
输入: [2,7,9,3,1]
输出: 12
解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
偷窃到的最高金额 = 2 + 9 + 1 = 12 。
定义dp:
dp[i][0]表示没有偷第i间房子的情况
dp[i][1]表示偷了第i间房子的情况 没有被偷可以分为2种情况:
1、也没有偷第i-1间房子
2、偷了第i-1间房子,不能再偷第i间了 偷了的情况:第i-1间没有偷,然后偷了第i间 状态转移方程:
dp[i][0] = Math.max(dp[i-1][0],dp[i-1][1]);
dp[i][1] = dp[i-1][0] + nums[i]; 和股票问题很像。
class Solution {
public int rob(int[] nums) {
if(nums==null || nums.length==0) return 0;
int[][] dp = new int[nums.length][2];
dp[0][0] = 0;
dp[0][1] = nums[0];
for (int i = 1; i < nums.length; i++) {
dp[i][0] = Math.max(dp[i-1][0],dp[i-1][1]);
dp[i][1] = dp[i-1][0] + nums[i];
}
return Math.max(dp[nums.length-1][0],dp[nums.length-1][1]);
}
}
Leetcode之动态规划(DP)专题-198. 打家劫舍(House Robber)的更多相关文章
- LeetCode 198. 打家劫舍(House Robber) 5
198. 打家劫舍 198. House Robber 题目描述 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两 ...
- 动态规划dp专题练习
貌似开坑还挺好玩的...开一个来玩玩=v=... 正好自己dp不是很熟悉,就开个坑来练练吧...先练个50题?小目标... 好像有点多啊QAQ 既然是开坑,之前写的都不要了! 50/50 1.洛谷P3 ...
- Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)
Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...
- [LeetCode] 198. 打家劫舍II ☆☆☆(动态规划)
描述 你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金.这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的.同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的 ...
- Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings)
Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings) 给定一个字符串,你的任务是计算这个字符串中有多少个回文子串. 具有不同开始位置或结束位置的子 ...
- Leetcode之动态规划(DP)专题-474. 一和零(Ones and Zeroes)
Leetcode之动态规划(DP)专题-474. 一和零(Ones and Zeroes) 在计算机界中,我们总是追求用有限的资源获取最大的收益. 现在,假设你分别支配着 m 个 0 和 n 个 1. ...
- Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)
Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...
- Leetcode之动态规划(DP)专题-264. 丑数 II(Ugly Number II)
Leetcode之动态规划(DP)专题-264. 丑数 II(Ugly Number II) 编写一个程序,找出第 n 个丑数. 丑数就是只包含质因数 2, 3, 5 的正整数. 示例: 输入: n ...
- Leetcode之动态规划(DP)专题-121. 买卖股票的最佳时机(Best Time to Buy and Sell Stock)
Leetcode之动态规划(DP)专题-121. 买卖股票的最佳时机(Best Time to Buy and Sell Stock) 股票问题: 121. 买卖股票的最佳时机 122. 买卖股票的最 ...
随机推荐
- oracle之约束-主键、非空、唯一、check、外键、默认
--首先添加主键约束alter table studentadd constraint PK_student_sno primary key(sno) --删除约束alter table studen ...
- ACM-ICPC 2017 沈阳赛区现场赛 G. Infinite Fraction Path && HDU 6223(BFS)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6223 参考题解:https://blog.csdn.net/qq_40482495/article/d ...
- BZOJ 1283: 序列 (最大费用流)
题意 有n个正整数,要选取里面的一些数,在保证每m个连续的数中最多选k个的情况下,使得得到的值最大. 分析 我们可以把问题先转化为选k次,每一次每m个数只能选一个.那么根据贪心的策略,每m个里一定会选 ...
- SVN - Subversion
Subversion yum install -y subversion 或者 subversion Edge 下载: # wget https://downloads-guests.open.col ...
- eclipse中不能找到dubbo.xsd
使用dubbo时遇到问题: org.xml.sax.SAXParseException: schema_reference.4: Failed to read schema document 'htt ...
- google中select添加onclick
有下拉跳转框如下所示: <select name="page" size="1" > <option onclick="refurb ...
- POJ 1144 Network —— (找割点)
这是一题找无向图的割点的模板题,割点的概念什么的就不再赘述了.这里讲一下这个模板的一个注意点. dfs中有一个child,它不等于G[u].size()!理由如下: 如上图,1的size是2,但是它的 ...
- SpringJunitTest
1.用MockBean和assert,而不是输出 import org.springframework.boot.test.mock.mockito.MockBean;MockBean import ...
- arcgis python 判断是数据库或是文件夹
import arcpy # Create a Describe object # desc = arcpy.Describe("C:/Data/chesapeake.gdb") ...
- svg简单的应用
1.可以直接在html内写svg (1)width宽度,height高度 (2)xmlns svg的规则 <svg xmlns="http://www.w3.org/2000/svg& ...