接TensorFlow(3)

我们构建一个多层卷积网络,以提升MNIST的识别性能

权重初始化

  为了创建这个模型,我们需要创建大量的权重和偏执项。这个模型中的权重在初始化是应该加入少量的噪声来打破对称性以及避免0梯度。由于我们使用的是ReLU神经元,因此比较好的做法是用一个较小的正数来初始化偏执项。以避免神经元节点输出恒为0 的问题(dead neurons)。为了不在建立模型的时候反复做初始化操作,我们定义两个函数用于初始化。

# 初始化权重
def weight_variable(shape):
initial = tf.truncated_normal(shape,sddev = 0.1)
return tf.Variable(initial)
# 初始化偏差
def bias_variable(shape):
initial = tf.constant(0.1,shape = shape)
return tf.Variable(initial)
W = weight_variable([784,10])
b = bias_variable(tf.zeros([10]))
#Variable 表示一个可以修改的张量。它们可以用于计算输入值,也可以在计算中被修改。

卷积和池化

  TensorFlow在卷积和池化上有很强的灵活性。我们怎么处理边界?步长应该设为多大?这里我们使用vanilla版本。我们的卷积使用1步长(stride size),0边距(padding size)(就是上一章说的填充值)的模板,保证输出和输入是同一个大小。我们的池化用简单传统的2*2大小的模板做maxpooling。我们这俩抽象成函数。

# 卷积,1步长(stride size),0边距(padding size),保证输入和输出是同一个大小
def conv2d(x,W):
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')#‘SAME’表示填充后,保证输出和输入的大小相同
# 池化,2*2
def max_pool_2x2(x) :
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

第一层卷积

现在我们可以开始实现第一层了。它由一个卷积接一个max pooling完成。卷积在每个5*5的patch中算出32个特征。卷积的权重张量形状是[5,5,1,32],表示patch的大小,输入的通道数目和输出的通道数目。而对于每一个输出通道都就一个对应的偏置量。

W_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32])

为了用这一层,我们把x变成一个4d向量,其第2,3维分别对应图片的宽和高,最后一维代表图片的颜色通道数(灰度图为1,gbr图为3)

x_image = tf.reshape(x,[-1,28,28,1])

我们把x_image和权值向量进行卷积,加上偏置项,然后应用ReLU激活函数,最后进行max pooling。

h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

第二层卷积

为了构建更深的网络,我们会把几个类似的层堆叠起来。第二层中,每个5*5的patch会得到64个特征。

W_conv2 = weight_variable([5.5.32,64])
b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

密集连接层

现在图片尺寸减小到了7*7(第一部输入28*28输出28*28,池化后除2,14*14;第二层输入14*14输出14*14,池化后7*7),我们加入一个有1024个神经元(即又1024个输出)的全连接层,用于处理整个图片。我们把池化层输出的张量reshape成一些向量,乘上权重矩阵,加上偏置,然后对其使用ReLU。

W_fc1 = weight_variable([7*7*64,1024])
b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1)

dropout

为了减少过拟合,我们在输出层之前加入dropout。我们用一个placeholder来代表一个神经元的输出在dropout中保持不变的概率。这样我们可以在训练过程中启用dropout,在测试过程中关闭dropout。TensorFlow的tf.nn.dropout操作处理可以屏蔽神经元的输出外,还会自动处理神经元输出值的scale。所以用dropout的时候不用考虑scale。

# dropout
keep_prob = tf.placeholder('float')
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)

输出层

最后我们加一个softmax层。就像前面的单层softmax regression一样

W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2) + b_fc2)

训练和评估模型

这个模型的效果如何呢?

为了进行训练和评估,我们使用与之前简单的单层SoftMax神经网络模型几乎相同的一套代码,只是我们会用更加复杂的ADAM优化器来做梯度最速下降,在feed_dict中加入额外的参数keep_prob来控制dropout比例。然后每100次迭代输出一次日志。

cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.initialize_all_variables())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0})
print "step %d, training accuracy %g"%(i, train_accuracy)
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print "test accuracy %g"%accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})

TensorFlow 学习(5)——进一步了解MNIST的更多相关文章

  1. TensorFlow 学习(3)——MNIST机器学习入门

    通过对MNIST的学习,对TensorFlow和机器学习快速上手. MNIST:手写数字识别数据集 MNIST数据集 60000行的训练数据集 和 10000行测试集 每张图片是一个28*28的像素图 ...

  2. tensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试

    刚开始学习tf时,我们从简单的地方开始.卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始. 神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输 ...

  3. Tensorflow学习笔记(对MNIST经典例程的)的代码注释与理解

    1 #coding:utf-8 # 日期 2017年9月4日 环境 Python 3.5  TensorFlow 1.3 win10开发环境. import tensorflow as tf from ...

  4. tensorflow学习笔记五:mnist实例--卷积神经网络(CNN)

    mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的.但是CNN层数要多一些,网络模型需要自己来构建. 程序比较复杂,我就分成几个部分来叙述. 首先,下载并加载数据: import ...

  5. TensorFlow 学习(4)——MNIST机器学习进阶

    要进一步改进MNIST学习算法,需要对卷积神经网络进行学习和了解 学习材料参见https://www.cnblogs.com/skyfsm/p/6790245.html 卷积神经网络依旧是层级网络,只 ...

  6. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

  7. tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)

    续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...

  8. TensorFlow学习笔记(MNIST报错修正 适用Tensorflow1.3)

    在Tensorflow实战Google框架下的深度学习这本书的MNIST的图像识别例子中,每次都要报错   错误如下: Only call `sparse_softmax_cross_entropy_ ...

  9. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  10. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

随机推荐

  1. 正确理解这四个重要且容易混乱的知识点:异步,同步,阻塞,非阻塞,5种IO模型

    本文讨论的背景是Linux环境下的network IO,同步IO和异步IO,阻塞IO和非阻塞IO分别是什么 概念说明 在进行解释之前,首先要说明几个概念: - 用户空间和内核空间 - 进程切换 - 进 ...

  2. 第十五章、Python多线程同步锁,死锁和递归锁

    目录 第十五章.Python多线程同步锁,死锁和递归锁 1. 引子: 2.同步锁 3.死锁 引子: 4.递归锁RLock 原理: 不多说,放代码 总结: 5. 大总结 第十五章.Python多线程同步 ...

  3. jquery 取指定class下的input checkbox选中的值

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. Delphi WriteFile函数

  5. 【2017-05-19】WebForm复合控件、用DropDownList实现时间日期选择。

    自动提交的属性: AutoPostBack="True" 1.RadioButtonList     单选集合 -属性:RepeatDirection:Vertical (垂直排布 ...

  6. AspectJ注解支持

    <aop:aspectj-autoproxy/> 配置aspectj启动 AspectJAutoProxyBeanDefintionParser implements BeanDefini ...

  7. anaconda应答文件

    一.anaconda和isolinux anaconda是linux安装程序的安装想到,在我们的系统安装光盘内有一个isolinux的目录,这个目录是用来启动光盘镜像的,下面我们说一下这个目录下的文件 ...

  8. eclipse中 Launch configuration的历史记录

    最近用eclipse打包jar的时候,需要指定一个main函数.需要先运行一下main函数,eclipse的Runnable JAR File Specification 下的Launch confi ...

  9. HDU-2072-单词数(字典树)

    链接: https://vjudge.net/problem/HDU-2072 题意: lily的好朋友xiaoou333最近很空,他想了一件没有什么意义的事情,就是统计一篇文章里不同单词的总数.下面 ...

  10. Twilio收发短信笔记

    twlio基本使用 Twilio是一个做成开放插件的电话跟踪服务(call-tracking service),可用来进行短信,图片等信息的集中于转发,貌似只支持北美地区的电话. 现有一个需求是:客户 ...