title: 【概率论】3-6:条件分布(Conditional Distributions Part II)

categories:

  • Mathematic
  • Probability

    keywords:
  • Multiplication Rule for Distributions
  • 乘法法则
  • Bayes’ Theorem
  • 贝叶斯理论
  • Law of Total Probability for Random Variables
  • 随机变量的全概率公式

    toc: true

    date: 2018-03-12 09:06:00



Abstract: 本文介绍联合分布的构建,也就是条件分布部分的扩展和应用

Keywords: 乘法法则,贝叶斯定理,随机变量的全概率公式

开篇废话

今天这篇是上一篇的后半部分,其实应该是一篇,但是上一篇由于长时间没写博客导致写作速度下降,所以不得已分成两篇,最近除了写概率的博客,还有数学分析的博客,CUDA系列的也在更新,所以有点要累吐血的感觉,同时还在学习数理统计,数理统计用的是陈希孺先生的概率论与数理统计的数理统计部分,看了二十几页,发现他说的90%我基本都能看懂,但是真的不知道为啥上大学的时候,有老师讲还一脸懵x,是我智商进化了?还是书本难度降低了?这个就不得而知了,除非把大学教材重新拿过来比较一下,那就有点浪费时间了,我的目标是学好数学去研究机器学习,而不是做教材点评,难道不是么?

Multiplication Rule for Conditional Probability

乘法法则我们在事件的概率部分学过了传送到条件概率,也是通过条件概率过度出来的,并且乘法法则相对于条件概率适用面更广,因为条件概率有除法计算,所以必然会对概率为0的分母有所忌惮,但是乘法法则无所谓,0可以随便来:

Pr(A∣B)=Pr(A,B)Pr(B) for Pr(B)≠0Pr(A,B)=Pr(A∣B)×Pr(B) for Pr(B)≥0
Pr(A|B)=\frac{Pr(A,B)}{Pr(B)} \text{ for } Pr(B)\neq 0\\
Pr(A,B)=Pr(A|B)\times Pr(B) \text{ for } Pr(B)\geq 0
Pr(A∣B)=Pr(B)Pr(A,B)​ for Pr(B)̸​=0Pr(A,B)=Pr(A∣B)×Pr(B) for Pr(B)≥0

根据随机变量的定义,我们知道随机变量是个函数,可以把事件映射成数字,如果我们将上面的条件概率转化成条件分布,应该怎么转呢?我们先看个例子

前面我们说过所有概率都是条件概率只是有些条件在题设中已经明确固定了,我们就没有必要再分布中再反复的体现了。

举个

【概率论】3-6:条件分布(Conditional Distributions Part II)的更多相关文章

  1. 【概率论】3-6:条件分布(Conditional Distributions Part I)

    title: [概率论]3-6:条件分布(Conditional Distributions Part I) categories: Mathematic Probability keywords: ...

  2. 【概率论】3-7:多变量分布(Multivariate Distributions Part II)

    title: [概率论]3-7:多变量分布(Multivariate Distributions Part II) categories: Mathematic Probability keyword ...

  3. 【概率论】5-7:Gama分布(The Gamma Distributions Part II)

    title: [概率论]5-7:Gama分布(The Gamma Distributions Part II) categories: - Mathematic - Probability keywo ...

  4. 【概率论】5-6:正态分布(The Normal Distributions Part II)

    title: [概率论]5-6:正态分布(The Normal Distributions Part II) categories: - Mathematic - Probability keywor ...

  5. 【概率论】4-7:条件期望(Conditional Expectation)

    title: [概率论]4-7:条件期望(Conditional Expectation) categories: - Mathematic - Probability keywords: - Exp ...

  6. 【概率论】3-2:连续分布(Continuous Distributions)

    title: [概率论]3-2:连续分布(Continuous Distributions) categories: Mathematic Probability keywords: Continuo ...

  7. 【概率论】2-1:条件概率(Conditional Probability)

    title: [概率论]2-1:条件概率(Conditional Probability) categories: Mathematic Probability keywords: Condition ...

  8. infer.net 入门2 用一个侦探故事来讲解,通俗易懂

    The results look OK, but how do you know that you aren’t missing something. Would a more sophisticat ...

  9. Markov Random Fields

    We have seen that directed graphical models specify a factorization of the joint distribution over a ...

随机推荐

  1. poj 1837 天平问题(01背包变种)

    题意:给你n个挂钩,m个砝码,要求砝码都用上,问有多少中方案数 题解:对于这道题目的状态,我们定义一个变量j为平衡度,当j=0的时候,表明天平平衡.定义dp[i][j]表达的含义为使用前n个砝码的时候 ...

  2. 轻松搭建CAS 5.x系列(7)-在CAS Server使用第三方帐号做认证

    概述说明 CAS除了使用自身数据库配置的帐号体系外,也可以使用第三方帐号来做认证. 比如实现如下类似的红色标注部分的登录效果: CAS自带了Facebook.GitHub.WordPress和CAS的 ...

  3. 在论坛中出现的比较难的sql问题:2(row_number函数+子查询)

    原文:在论坛中出现的比较难的sql问题:2(row_number函数+子查询) 2.如何去掉字段内的重复.

  4. webAPI中“System.Web.Http.HttpConfiguration”不包含“EnableSystemDiagnosticsTracing”的定义解决办法

    webAPI中“System.Web.Http.HttpConfiguration”不包含“EnableSystemDiagnosticsTracing”的定义 今天从 运行 WebAPI 工程的代码 ...

  5. 减少打包组件vue.config.js——Webpack的externals的使用

    vue.config.js module.exports = { configureWebpack:{ externals: { vue: 'Vue', 'vue-router':'VueRouter ...

  6. pyodbc报错pyodbc.InterfaceError

    connection = pyodbc.connect(r'Driver={SQL Server Native Client 11.0};Server=...;Database=...;Trusted ...

  7. RGB转YUV 各种库的性能比较

    分辨率   1920*1080 平台  : X64  Windows  VS2015 测试  BGR24-->YUV420 trans_scale: 4.14 ms (自己写得)libyuv  ...

  8. vscode 基本知识以及如何配置 C++ 环境

    参考: 在用VSCode? 看完这篇文章, 开发效率翻倍!最后一条厉害了~ Visual Studio Code(VS code)你们都在用吗?或许你们需要看一下这篇博文 按下 ctrl+K,再按下 ...

  9. ASTA存在的问题

    1.客户端执行一个查询,提示xx字段不存在.跟踪代码,原来服务端ADOQuery设置BCD返回,客户端AstaClientDataSet在设计期加了字段是ftFloat类型,这两个类型不同产生的错误. ...

  10. jar下载及Maven配置整理

    Spring的各版本jar包下载地址http://repo.spring.io/release/org/springframework/spring/ springframework下载地址https ...