title: 【概率论】3-6:条件分布(Conditional Distributions Part II)

categories:

  • Mathematic
  • Probability

    keywords:
  • Multiplication Rule for Distributions
  • 乘法法则
  • Bayes’ Theorem
  • 贝叶斯理论
  • Law of Total Probability for Random Variables
  • 随机变量的全概率公式

    toc: true

    date: 2018-03-12 09:06:00



Abstract: 本文介绍联合分布的构建,也就是条件分布部分的扩展和应用

Keywords: 乘法法则,贝叶斯定理,随机变量的全概率公式

开篇废话

今天这篇是上一篇的后半部分,其实应该是一篇,但是上一篇由于长时间没写博客导致写作速度下降,所以不得已分成两篇,最近除了写概率的博客,还有数学分析的博客,CUDA系列的也在更新,所以有点要累吐血的感觉,同时还在学习数理统计,数理统计用的是陈希孺先生的概率论与数理统计的数理统计部分,看了二十几页,发现他说的90%我基本都能看懂,但是真的不知道为啥上大学的时候,有老师讲还一脸懵x,是我智商进化了?还是书本难度降低了?这个就不得而知了,除非把大学教材重新拿过来比较一下,那就有点浪费时间了,我的目标是学好数学去研究机器学习,而不是做教材点评,难道不是么?

Multiplication Rule for Conditional Probability

乘法法则我们在事件的概率部分学过了传送到条件概率,也是通过条件概率过度出来的,并且乘法法则相对于条件概率适用面更广,因为条件概率有除法计算,所以必然会对概率为0的分母有所忌惮,但是乘法法则无所谓,0可以随便来:

Pr(A∣B)=Pr(A,B)Pr(B) for Pr(B)≠0Pr(A,B)=Pr(A∣B)×Pr(B) for Pr(B)≥0
Pr(A|B)=\frac{Pr(A,B)}{Pr(B)} \text{ for } Pr(B)\neq 0\\
Pr(A,B)=Pr(A|B)\times Pr(B) \text{ for } Pr(B)\geq 0
Pr(A∣B)=Pr(B)Pr(A,B)​ for Pr(B)̸​=0Pr(A,B)=Pr(A∣B)×Pr(B) for Pr(B)≥0

根据随机变量的定义,我们知道随机变量是个函数,可以把事件映射成数字,如果我们将上面的条件概率转化成条件分布,应该怎么转呢?我们先看个例子

前面我们说过所有概率都是条件概率只是有些条件在题设中已经明确固定了,我们就没有必要再分布中再反复的体现了。

举个

【概率论】3-6:条件分布(Conditional Distributions Part II)的更多相关文章

  1. 【概率论】3-6:条件分布(Conditional Distributions Part I)

    title: [概率论]3-6:条件分布(Conditional Distributions Part I) categories: Mathematic Probability keywords: ...

  2. 【概率论】3-7:多变量分布(Multivariate Distributions Part II)

    title: [概率论]3-7:多变量分布(Multivariate Distributions Part II) categories: Mathematic Probability keyword ...

  3. 【概率论】5-7:Gama分布(The Gamma Distributions Part II)

    title: [概率论]5-7:Gama分布(The Gamma Distributions Part II) categories: - Mathematic - Probability keywo ...

  4. 【概率论】5-6:正态分布(The Normal Distributions Part II)

    title: [概率论]5-6:正态分布(The Normal Distributions Part II) categories: - Mathematic - Probability keywor ...

  5. 【概率论】4-7:条件期望(Conditional Expectation)

    title: [概率论]4-7:条件期望(Conditional Expectation) categories: - Mathematic - Probability keywords: - Exp ...

  6. 【概率论】3-2:连续分布(Continuous Distributions)

    title: [概率论]3-2:连续分布(Continuous Distributions) categories: Mathematic Probability keywords: Continuo ...

  7. 【概率论】2-1:条件概率(Conditional Probability)

    title: [概率论]2-1:条件概率(Conditional Probability) categories: Mathematic Probability keywords: Condition ...

  8. infer.net 入门2 用一个侦探故事来讲解,通俗易懂

    The results look OK, but how do you know that you aren’t missing something. Would a more sophisticat ...

  9. Markov Random Fields

    We have seen that directed graphical models specify a factorization of the joint distribution over a ...

随机推荐

  1. (二十六)JavaBean

    一.定义 1 JavaBean是一个遵循特定写法的Java类,它通常具有如下特点: 这个Java类必须具有一个无参的构造函数 属性必须私有化. 私有化的属性必须通过public类型的方法暴露给其它程序 ...

  2. C# EF & linq 常用操作

    一.EF的左连接 在EF中,当在dbset使用join关联多表查询时,连接查询的表如果没有建立相应的外键关系时,EF生成的SQL语句是inner join(内联),对于inner join,有所了解的 ...

  3. log4j2.xml配置,导致启动报错

    项目中遇到问题,当使用tomcat启动时,没问题:当使用内置tomcat启动时却报错,找不到日志路径. 变量位置: <properties> <property name=" ...

  4. char str = '1.2.';问题

    偶然看到群里老哥问道这个问题 #include <iostream> using namespace std; int main() { char str = '1.2.'; ; } 什么 ...

  5. OpenCV实现图象翻转、滤波、锐化

    OpenCV实现图象翻转.滤波.锐化 注:以下代码,使用opencv库函数实现了对图片的翻转.灰度图转换.各种滤波.各种锐化. 库函数相关参数及说明参阅:OpenCV中文站=>opencv教程( ...

  6. 理解JVM之JAVA运行时内存区域

    java运行时内存区域划分为方法区,堆区,虚拟机栈区,本地方法栈,程序计数器.其中方法区跟堆区是线程共享的数据区,其他的是线程私有的数据区. 1.程序计数器 程序计数器(PC)是一块较小的内存,他是存 ...

  7. IE浏览器下载后台返回的Excel文件,报错400

    问题描述(见下图): 问题分析: 400是后端没有接收到请求 原因是后端高版本的tomcat不会自动对字符串进行转义 所以,前端把参数值进行转义,即encodeURI(string) 问题处理前代码( ...

  8. Computer Vision_33_SIFT:Speeded-Up Robust Features (SURF)——2006

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  9. 【问题】No manual entry for pthread_create in section 3

    参考文章:https://blog.csdn.net/wwwlyj123321/article/details/79211184 apt-get install manpages-posix manp ...

  10. 数据库连接池,DBUtil的模板,dbcp,c3p0

    数据库连接池,DBUtil的模板,Druid使用(重点) 一.DBUtil模板 public class DBUtilTest { public static Connection connectio ...