1014 Waiting in Line (30 分)
 

Suppose a bank has N windows open for service. There is a yellow line in front of the windows which devides the waiting area into two parts. The rules for the customers to wait in line are:

  • The space inside the yellow line in front of each window is enough to contain a line with M customers. Hence when all the N lines are full, all the customers after (and including) the (st one will have to wait in a line behind the yellow line.
  • Each customer will choose the shortest line to wait in when crossing the yellow line. If there are two or more lines with the same length, the customer will always choose the window with the smallest number.
  • Customer​i​​ will take T​i​​ minutes to have his/her transaction processed.
  • The first N customers are assumed to be served at 8:00am.

Now given the processing time of each customer, you are supposed to tell the exact time at which a customer has his/her business done.

For example, suppose that a bank has 2 windows and each window may have 2 custmers waiting inside the yellow line. There are 5 customers waiting with transactions taking 1, 2, 6, 4 and 3 minutes, respectively. At 08:00 in the morning, customer​1​​ is served at window​1​​ while customer​2​​ is served at window​2​​. Customer​3​​ will wait in front of window​1​​ and customer​4​​ will wait in front of window​2​​. Customer​5​​ will wait behind the yellow line.

At 08:01, customer​1​​ is done and customer​5​​ enters the line in front of window​1​​ since that line seems shorter now. Customer​2​​ will leave at 08:02, customer​4​​at 08:06, customer​3​​ at 08:07, and finally customer​5​​ at 08:10.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 4 positive integers: N (≤, number of windows), M (≤, the maximum capacity of each line inside the yellow line), K (≤, number of customers), and Q (≤, number of customer queries).

The next line contains K positive integers, which are the processing time of the K customers.

The last line contains Q positive integers, which represent the customers who are asking about the time they can have their transactions done. The customers are numbered from 1 to K.

Output Specification:

For each of the Q customers, print in one line the time at which his/her transaction is finished, in the format HH:MM where HH is in [08, 17] and MM is in [00, 59]. Note that since the bank is closed everyday after 17:00, for those customers who cannot be served before 17:00, you must output Sorry instead.

Sample Input:

2 2 7 5
1 2 6 4 3 534 2
3 4 5 6 7

Sample Output:

08:07
08:06
08:10
17:00
Sorry

题意分析:

(1)本题模拟银行排队,逻辑上不难,操作起来有点麻烦。银行来了K个客户,银行有N个窗口,每个窗口前有M个位置排队,客户选择最短的队伍排,根据每个客户的序号和服务时间来确定最后客户离开银行的时间。

(2)属于队列的问题,但实际上可以将问题简化:因为每个客户的服务时间是固定的,假设前N*M个客户达到之后排好位置后,他们的离开时间也就确定好了,即每个窗口本次服务结束的时间也就确定了,比如第一个人的服务时间是5min,则本次窗口的服务结束时间点是8:05,这样我们就可以比较这N个窗口当前服务结束的时间点,谁最早结束,谁的队伍最短,在线外等候的第N*M+1个客户选择这个队伍排,以此类推。

(3)每个客户离开的时间等于他前面一个人的离开时间加上他自己的服务时间,于是定义每个队列中的值是前一个值加上这个人的服务时间

(4)为了计算方便,将时间的基点设为0,算出的结果是在银行停留的时间(以分钟计算),最后再换算成小时+8

可能坑点:

(1)这是个大深坑,必须要保证当一个人等待时间大于或等于540分钟的时候,就不能服务了,而不是等待时间加上他的服务时间,言外之意就是,一旦这个人在540分钟之内获得服务,那么无论这个人的服务时间有多长,也要为他服务完,这也是符合实际的。

#include<bits/stdc++.h>
using namespace std;
queue<int>q[];
int a[];//服务时间
int ct[];//还需多少时间
int t[];//服务结束的时间
int N,M,K,Q;
void clear(queue<int> &q)
{
queue<int> empty;
swap(empty, q);
}
int main(){
cin>>N>>M>>K>>Q;
for(int i=;i<=N+;i++){
clear(q[i]);
}
for(int i=;i<=K;i++)
{
cin>>a[i];
ct[i]=a[i];
t[i]=;
}
//先把他们再队伍里放好
int p=min(N*M,K);
for(int i=;i<=p;i++)//这里出现了错误,后来知道要选择最小的
{
int x=i%N;
if(x==) x=N;
q[x].push(i);
}
if(K>=N*M+)
{
for(int i=N*M+;i<=K;i++){
q[N+].push(i);
}
}
//先标记最前面一排的人的时间
int T=;
while()
{
//每次挑出队列最前面的人群中的最少时间
int min_t=;
int is_all_empty=;
for(int i=;i<=N;i++)
{
if(!q[i].empty())
{
min_t=min(min_t,ct[q[i].front()]);
is_all_empty=;
}
}
if(is_all_empty==){
break;
}
T+=min_t;//从开始到现在过去了T分钟 //那么每个人减去这个时间,并把下一个人排进队伍
for(int i=;i<=N;i++)
{
//cout<<"遍历第"<<i<<"个窗口"<<endl;
if(!q[i].empty())//要先判断,否则会有段错误,这里错过一次
{ ct[q[i].front()]-=min_t;
if(ct[q[i].front()]==){
//cout<<i<<"窗口完成 "<<q[i].front()<<" 时间为"<<T<<endl;
//完成了
t[q[i].front()]=T; //设置他们结束的时间
q[i].pop();
//新的人可以入队啦
if(!q[N+].empty())
{
int x = q[N+].front();
q[N+].pop();
q[i].push(x);
//cout<<x<<"加入到 "<<i<<" 窗口"<<endl;
}
}
}
}
//大坑!!!特殊处理
if(T>=){
//仍要坚持把当前再服务的人服务完
for(int i=;i<=N;i++)
{
if(!q[i].empty())
{
int x=q[i].front();
if(ct[x]!=a[x])//处理到一半的继续处理
{
t[x]=T+ct[x];
}
}
}
break;
}
}
//输出时间
for(int i=;i<=Q;i++)
{
int x;
cin>>x;
if(t[x]==)
{
cout<<"Sorry"<<endl;
}
else
{
int h=t[x]/;
int m=t[x]-h*;
h+=;
if(h<)
{
cout<<'';
}
cout<<h<<":";
if(m<)
{
cout<<'';
}
cout<<m<<endl;
} }
return ;
}
 

PAT 甲级 1014 Waiting in Line (30 分)(queue的使用,模拟题,有个大坑)的更多相关文章

  1. PAT甲级1014. Waiting in Line

    PAT甲级1014. Waiting in Line 题意: 假设银行有N个窗口可以开放服务.窗前有一条黄线,将等候区分为两部分.客户要排队的规则是: 每个窗口前面的黄线内的空间足以包含与M个客户的一 ...

  2. 1014 Waiting in Line (30分)

    1014 Waiting in Line (30分)   Suppose a bank has N windows open for service. There is a yellow line i ...

  3. 【PAT甲级】1014 Waiting in Line (30 分)(队列维护)

    题面: 输入四个正整数N,M,K,Q(N<=20,M<=10,K,Q<=1000),N为银行窗口数量,M为黄线内最大人数,K为需要服务的人数,Q为查询次数.输入K个正整数,分别代表每 ...

  4. PAT 1014 Waiting in Line (30分) 一个简单的思路

    这题写了有一点时间,最开始想着优化一下时间,用优先队列去做,但是发现有锅,因为忽略了队的长度. 然后思考过后,觉得用时间线来模拟最好做,先把窗口前的队列填满,这样保证了队列的长度是统一的,这样的话如果 ...

  5. PAT A 1014. Waiting in Line (30)【队列模拟】

    题目:https://www.patest.cn/contests/pat-a-practise/1014 思路: 直接模拟类的题. 线内的各个窗口各为一个队,线外的为一个,按时间模拟出队.入队. 注 ...

  6. 1014 Waiting in Line (30 分)

    Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...

  7. PTA 1014 Waiting in Line (30分) 解题思路及满分代码

    题目 Suppose a bank has N windows open for service. There is a yellow line in front of the windows whi ...

  8. 【PAT Advanced Level】1014. Waiting in Line (30)

    简单模拟题,注意读懂题意就行 #include <iostream> #include <queue> using namespace std; #define CUSTOME ...

  9. PAT甲级——1131 Subway Map (30 分)

    可以转到我的CSDN查看同样的文章https://blog.csdn.net/weixin_44385565/article/details/89003683 1131 Subway Map (30  ...

随机推荐

  1. 当前form窗体随系统屏幕变化

    private void 新建_Load(object sender, EventArgs e) { int DeskWidth = Screen.PrimaryScreen.WorkingArea. ...

  2. .NET Framework 概述

    文章标题:.NET Framework 概述 地址:https://docs.microsoft.com/zh-cn/dotnet/framework/get-started/overview NET ...

  3. Java锁--LockSupport

    转载请注明出处:http://www.cnblogs.com/skywang12345/p/3505784.html LockSupport介绍 LockSupport是用来创建锁和其他同步类的基本线 ...

  4. re模块中的非贪婪匹配

    python的re模块中有贪婪匹配和非贪婪匹配之分,当使用*时会匹配零个或多个,使用+时会匹配一个或多个.当使用?在前边特殊符号前时会进行非贪婪匹配,匹配零个或者一个,今天主要讨论非贪婪匹配中存在的坑 ...

  5. node.js接收异步任务结果的两种方法----callback和事件广播

    事件广播 发送方调用emit方法,接收方调用on方法,无论发送方或是接收方,都会工作在一个频道 声明了一个模块,用于读取mime.json中的记录 var fs = require('fs'); va ...

  6. Java8-Lock-No.06

    import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util ...

  7. [2019HDU多校第四场][HDU 6617][D. Enveloping Convex]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6617 题目大意:给出一凸包\(P\),求最小的与\(P\)相似且对应边平行的多边形,使得题目给出的\( ...

  8. 003_STM32程序移植之_W25Q64

    1. 测试环境:STM32C8T6 2. 测试模块:W25Q64FLASH模块 3. 测试接口: 1. W25Q64FLASH模块接口: VCC3.3--------------------VCC3. ...

  9. 洛谷P5369 [PKUSC2018]最大前缀和 [DP]

    传送门 思路 这么一道签到题竟然没切掉真是丢人呢-- 首先有一个\(O(3^n)\)的SB方法,记录\(dp_{S,T}\)表示已经填进去了\(S\),当前最大前缀和集合为\(T\),随便转移.太简单 ...

  10. 7.26T3小游戏

    小游戏 题目描述 有一个简单的小游戏.游戏的主人公是一个勇士,他要穿过一片黑森林,去 解救公主.黑森林的地图可以用一张 V 个点.E 条边的无向图来描述,起点是 1 号点,终点是 V 号点.勇士从起点 ...