迭代器iterator-生成器generator
1. 迭代
根据记录的前面的元素的位置信息 去访问后续的元素的过程 -遍历 迭代
2. 可迭代对象 iterable
如何判断可迭代对象的3种方式
- 能够被迭代访问的对象 for in
- 常用可迭代对象-list tuple str
- from collections import Iterable
- isinstance(obj, Iterable)
3. 可迭代对象
可迭代对象通过__iter__方法提供一个 可以遍历对象中数据的工具-迭代器
iter(可迭代对象) 可以获取可迭代对象的迭代器
通过迭代器可以迭代访问 数据
next(迭代器) ===== 迭代器对象.__next__()
"""
1 可迭代对象的本质 提供了一个迭代器(遍历可迭代对象中的数据) 2 如何获取可迭代对象中的迭代器 迭代器对象 = iter(可迭代对象)
3 如果通过迭代器访问可迭代对象中下一个元素 元素的值 = next(迭代器对象)
如果迭代器遍历完成 抛出 停止迭代-异常StopIteration
"""
如果需要实现一个迭代器 就需要实现__next__()
4. 迭代器 iterator
-- 迭代器访问可迭代对象中数据 判断对象是否是迭代器类型
from collections import Iterator
isinstance(obj, Iterator)
自己实现
迭代器本身也是可迭代对象 __iter__() 提供迭代器(self)
下一个元素的值 = next(迭代器) =====> __next__()
实现一个可迭代对象
from collections import Iterable
from collections import Iterator
import time class MylistIterator(object):
"""这是Mylist类型的对应迭代器类型 """
def __init__(self,data):
# 需要被便利的数据
self.data = data
# 保存用户访问的位置
self.index = 0 def __iter__(self):
"""python规定 迭代器是一种可迭代对象"""
return self def __next__(self):
"""next(ml_iterator) 相当于调用迭代器对象的.__next__()"""
if self.index < len(self.data):
ret = self.data[self.index]
self.index += 1
return ret
else:
# 访问完成 应该抛出异常
raise StopIteration class Mylist(object):
"""可迭代对象"""
def __init__(self):
self.data = [1,2,3,4,5] def __iter__(self):
"""提供迭代器"""
# 返回迭代器对象
mliter = MylistIterator(self.data)
return mliter # ml是一个可迭代类型
ml = Mylist() # 获取可迭代对象的 迭代器对象
ml_iter = iter(ml)
print(isinstance(ml_iter, Iterator))
for i in ml:
print(i)
time.sleep(1) """
1 可迭代对象的本质 提供了一个迭代器(遍历可迭代对象中的数据) 2 如何获取可迭代对象中的迭代器 迭代器对象 = iter(可迭代对象)
实际上相当于 可迭代对象.__iter__()
3 如果通过迭代器访问可迭代对象中下一个元素 元素的值 = next(迭代器对象)
如果迭代器遍历完成 抛出 停止迭代-异常StopIteration
"""
print(isinstance(ml, Iterable))
用迭代器完成斐波那契数列(难点在next)
"""兔子队列 某一项的值是前两项的和
0 1 1 2 3 5 8
""" class Fib(object):
def __init__(self,n):
"""初始化操作"""
# n代表数列的长度
self.n = n # 下标记录
self.index = 0 self.number1 = 0
self.number2 = 1 def __iter__(self):
return self def __next__(self):
"""next(迭代器) === .__next__()"""
if self.index < self.n:
ret = self.number1
self.number1,self.number2 = self.number2,self.number2+self.number1
self.index += 1
return ret
else:
raise StopIteration # list() tuple()都可以接收迭代器 并且将遍历到的数据存储到集合中
print(list(Fib(10)))
#
# # 打印斐波那契数列的前10项的值
# # for i in Fib(10):
# # print(i)
# # 1 通过iter函数获取可迭代对象 Iterable 的迭代器 iterator
# ml_iterator = iter(Fib(1000))
#
# # 2 在循环内部不断调用next(迭代器) 获取下一个元素的值
# # 3 如果迭代完成 会抛出一个停止迭代的异常StopIteration
5. 生成器 generator
生成器是一种特殊的迭代器 --- 是迭代器, 并且有自己的特点
1 创建生成器表达式 [] ----》 (x for x in range(100))
2 生成器函数
凡是有yield关键字的函数都不是普通函数了 而是生成器函数
# 列表推导式
lis=[x for x in range(10)]
print(lis) # 生成器表达式 中括号变圆括号
data=(x for x in range(10))
print(data)
# 遍历data
for i in data:
print(i)
结果:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
<generator object <genexpr> at 0x02AE7120>
0
1
2
3
4
5
6
7
8
9
6. yield关键字的作用
挂起当前函数 将后面表达式的值 返回到调用生成器的地方
接收数据 并唤醒当前函数 并且紧接着上次运行的地址继续执行
7. 唤醒生成器的两种方式
生成器.send("数据")
next(生成器) === 生成器.send(None)
在第一次调用生成器对象的是 必须使用next()
在后续的情况下 send和next可以混用
迭代器iterator-生成器generator的更多相关文章
- python之路(6)迭代器和生成器
目录 迭代器(Iterator) 生成器(Generator) 迭代器 迭代器协议:对象提供一个next方法,执行该方法要么返回下一项,要么引起一个Stopiteration异常 可迭代对象:实现了 ...
- pytorch :: Dataloader中的迭代器和生成器应用
在使用pytorch训练模型,经常需要加载大量图片数据,因此pytorch提供了好用的数据加载工具Dataloader. 为了实现小批量循环读取大型数据集,在Dataloader类具体实现中,使用了迭 ...
- Python迭代器、生成器
迭代器 iterator # 只要是能被for循环的数据类型 就一定拥有__iter__方法 # 迭代器多了的方法 print(set(dir([].__iter__()))-set(dir([])) ...
- ES6中的迭代器(Iterator)和生成器(Generator)
前面的话 用循环语句迭代数据时,必须要初始化一个变量来记录每一次迭代在数据集合中的位置,而在许多编程语言中,已经开始通过程序化的方式用迭代器对象返回迭代过程中集合的每一个元素 迭代器的使用可以极大地简 ...
- Python进阶内容(四)--- 迭代器(Iterator)与生成器(Generator)
迭代器 我们已经知道,可以直接作用于for循环的数据类型有以下几种: 一类是集合数据类型,如list.tuple.dict.set.str等: 一类是generator,包括生成器和带yield的ge ...
- Python中生成器generator和迭代器Iterator的使用方法
一.生成器 1. 生成器的定义 把所需要值得计算方法储存起来,不会先直接生成数值,而是等到什么时候使用什么时候生成,每次生成一个,减少计算机占用内存空间 2. 生成器的创建方式 第一种只要把一个列表生 ...
- python生成器(generator)、迭代器(iterator)、可迭代对象(iterable)区别
三者联系 迭代器(iterator)是一个更抽象的概念,任何对象,如果它的类有next方法(next python3)和__iter__方法返回自己本身,即为迭代器 通常生成器是通过调用一个或多个yi ...
- Python之生成器(generator)和迭代器(Iterator)
generator 生成器generator:一边循环一边计算的机制. 生成器是一个特殊的程序,可以被用于控制循环的迭代行为.python中的生成器是迭代器的一种,使用yield返回值函数,每次调用y ...
- Python 生成器 Generator 和迭代器 Iterator
#最近一周刚开始接触python,基本的语法,和使用特性和Java差别还是蛮大的. 今天接触到Python的迭代器和生成器有点不是很明白,所以搜索了先关资料整理了一些自己的理解和心得 简述(Profi ...
- Python 生成器 (generator) & 迭代器 (iterator)
python 生成器 & 迭代器 生成器 (generator) 列表生成式 列表生成式用来生成一个列表,虽然写的是表达式,但是储存的是计算出来的结果,因此生成的列表受到内存大小的限制 示例: ...
随机推荐
- linux网络编程之posix共享内存
今天继续研究posix IPC对象,这次主要是学习一下posix共享内存的使用方法,下面开始: 下面编写程序来创建一个共享内存: 编译运行: 那posix的共享内存存放在哪里呢?上节中学的posix的 ...
- 预定义的基础类型转换,BitConverter,BitArray
一.BitConverter 将预定义的基础类型与字节数据进行互转 1.将值类型转成字节数组(Unicode):BitConverter.GetBytes() byte[] data = BitCon ...
- django设置时区与语言
django的目录下,django/conf/locale,这个目录下,看有什么语言包, zh_Hans代表中文简体,zh_Hant代表中文繁体,设置即可. TIME_ZONE设置为:Asia/Sha ...
- 004_软件安装之_Altium Designer
文件中有软件简单视频教程,安装有pdf教程 链接:https://pan.baidu.com/s/1ow-OHdsPuAyXCevjCVqEsg 提取码:l2rt 复制这段内容后打开百度网盘手机App ...
- sql server 存储过程---游标的循环
sqlserver中的循环遍历(普通循环和游标循环) sql 经常用到循环,下面介绍一下普通循环和游标循环 1.首先需要一个测试表数据Student
- SpringMVC拦截器及多拦截器时的执行顺序
本文链接:https://blog.csdn.net/itcats_cn/article/details/80371639拦截器的配置步骤 springmvc.xml中配置多个拦截器配置自定义拦截器并 ...
- All 关键字
本文档已存档,并且将不进行维护. GROUP BY 子句和 ALL 关键字 SQL Server 2005 Transact-SQL 在 GROUP BY 子句中提供 ALL 关键字.只有在 SELE ...
- ckeditor自定义工具栏
/** * 获取编辑器工具栏自定义参数 * @param type 类型 simple=极简版 basic=基本版 full=完整版 */ function get_ckeditor_toolbar( ...
- Python测试框架对比
如有任何学习问题,可以添加作者微信:lockingfree 更多学习资料请加QQ群: 822601020获取 unittest, pytest, nose, robot framework对比 什么是 ...
- 在win10环境下IED配置spark项目
eclipse在对spark的支持上并不友好,所以需要新下载并安装IntelliJ IDEA 2019.1.我下载安装的是专业版的,直接在网上搜索了破解码进行破解. 1. 配置java和scala I ...