CNN 笔记
1. 卷积后的图像的大小为 (w+2p-f)*3 / s W为图像的宽,p为padding的大小, f为卷积核大小, 3 为图像的通道数, s为步长
2. 卷积层和池化层的区别?
卷积层是窗口滑动卷积, 池化层是取最大值
3. sigmod 函数和 relu函数的区别 ??
sigmoid函数,
sigmoid函数在在两段接近饱和区是,变换的很缓慢,导数趋近于0,在反向传播时,容易出现梯度消失的现象,造成信息的丢失。同时因为sigmoid函数是指数运算,计算量较大,导致反向传播求误差梯度是,计算量相对于relu会大很多,而采用relu激活函数,计算量会小很多。同样还有一个好处,relu函数会使得一部分神经元的输出为0,这样会使网络稀疏,减少了参数的依赖关系,缓解了过拟合的发生。
4. 特征提取 尽量提取和需要识别的物体的相关的特征,不然容易过拟合
- sobel算子

5. 什么时候使用Relu函数,
每次迭代后都需要使用Relu函数;
6. 如果是10个 32*32*1 的特征图, 需要的参数为 10*5*5*3 + 10 = 760 个参数;
7. caffe 参数含义
epoch batch batch_size 含义
所以图片训练完叫一次epoch, 由于图片太多,无法将他们一次性训练完,所以要分很多个batch, 一个batch有batch_size张图片
lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。
inner_product_layer :全连接层

weight_filter 权值初始化方法 xavier 使用xavier方法初始化

bias_filler 偏置项初始化
accuracy层:就是计算准确度的层
accuracy层是通过对比预测的结果与输入的label,通过统计预测正确的数量与总共要预测的数量的比值得到的。
accuracy层需要两个输入源,一个是经过网络预测的数值,另一个是最开始输入的label至,分别对应了bottom[0]和bottom[1].
SoftmaxWithLoss层 : 计算归一化概率和loss

8. 向量化
没有使用向量化的逻辑回归

使用了向量化的逻辑回归
9 梯度下降

10 逻辑回归中的代价函数

其中
是未知的, y(i) 是已知的, 我们的目的就是求得
的表达式, 即求得wT 和b
CNN 笔记的更多相关文章
- CNN笔记:通俗理解卷积神经网络【转】
本文转载自:https://blog.csdn.net/v_july_v/article/details/51812459 通俗理解卷积神经网络(cs231n与5月dl班课程笔记) 1 前言 2012 ...
- CNN笔记:通俗理解卷积神经网络
CNN笔记:通俗理解卷积神经网络 2016年07月02日 22:14:50 v_JULY_v 阅读数 250368更多 分类专栏: 30.Machine L & Deep Learning 机 ...
- 自然语言处理:问答 + CNN 笔记
参考 Applying Deep Learning To Answer Selection: A Study And An Open Task follow: http://www.52nlp.cn/ ...
- CNN笔记
Deep Learning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的一个应用. 转 http://blog.csdn.net/stdcoutzyx/article/details/ ...
- 卷积神经网络 CNN 笔记
链接: 在训练卷积神经网络(CNN)的某一个卷积层时,实际上是在训练一系列的滤波器(filter).简单来说,训练CNN在相当意义上是在训练每一个卷积层的滤波器.让这些滤波器组对特定的模式有高的激活, ...
- CNN 笔记3
- cnn笔记2
- CNN 笔记1
- Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...
随机推荐
- 爬虫之代理和cookie的处理
代理操作 代理的目的 为解决ip被封的情况 什么是代理 代理服务器:fiddler 为什么使用代理可以改变请求的ip 本机的请求会先发送给代理服务器,代理服务器会接受本机发送过来的请求(当前请求对应的 ...
- [转]用代码访问 Https
可以参考: https://blog.csdn.net/irokay/article/details/78801307 跳过证书验证方法 HttpClient简介HTTP 协议可能是现在 Intern ...
- powershell命令教程
启动 powershell #字符串操作 对象操作 "hello".Length #进程操作 PS C:\> notepad PS C:\> $process=get- ...
- C++ STL swap_range
#include <iostream>#include <vector>#include <deque>#include <algorithm> usi ...
- 查看oracle数据库的链接数和用户
http://www.cnblogs.com/is1988/archive/2012/11/21/2780067.html 1.查询oracle的连接数select count(*) from v$s ...
- NLP之TF-IDF与BM25原理探究
前言 本文主要是对TF-IDF和BM25在公式推演.发展沿革方面的演述,全文思路.图片基本来源于此篇公众号推文<搜索中的权重度量利器: TF-IDF和BM25>,侵删. 一 术语 TF: ...
- HANA到MySQL数据同步方法!
随着各行各业信息化建设的不断发展,异构数据库间的互通.汇聚,挖掘,分析逐渐被提上日程, TreeSoft数据库管理系统,实现了异构数据库的维护.监控.可视化.自动交换同步.目前支持MySQL,Orac ...
- 如何在ubuntu下重建被grub覆盖的win10引导区?
如何在ubuntu下重建被grub覆盖的win10引导区? 1.修改grub配置文件: sudo vi /etc/default/grub 2.设置:GRUB_DEFAULT = 2 3.更新配置文件 ...
- 10.Windows远程管理工具RAT----Metasploit基础----Metasploit模块----fsociety工具包
Windows远程管理工具RAT QuasarRAT github.com/quasar/QuasarRAT 命令环境 MINGW64 (GCC编译器) mkdir RAT cd RAT git cl ...
- redis的事物操作