洛谷传送门

Farey Sequence

(格式太难调,题面就不放了)


  分析:

  实际上求分数个数就是个幌子,观察可以得到,所求的就是$\sum^n_{i=2}\phi (i)$,所以直接欧拉筛+前缀和即可。

  Code:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<iomanip>
#include<algorithm>
using namespace std;
const int N=1e6+;
int n,phi[N],q[N];
long long sum[N];
bool vis[N];
void ready()
{
int top=,k;phi[]=;
for(int i=;i<N;i++){
if(!vis[i])phi[q[++top]=i]=i-;
for(int j=;j<=top&&(k=i*q[j])<N;j++){
vis[k]=true;
if(i%q[j])
phi[k]=phi[i]*(q[j]-);
else {
phi[k]=phi[i]*q[j];break;
}
}
}
sum[]=phi[];
for(int i=;i<N;i++)
sum[i]=sum[i-]+phi[i];
}
int main()
{
ready();
while(){
scanf("%d",&n);if(n==)break;
printf("%lld\n",sum[n]);}
return ;
}

UVA12995 Farey Sequence [欧拉函数,欧拉筛]的更多相关文章

  1. GCD nyoj 1007 (欧拉函数+欧几里得)

    GCD  nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 The greatest common divisor ...

  2. 【luogu3768】简单的数学题 欧拉函数(欧拉反演)+杜教筛

    题目描述 给出 $n$ 和 $p$ ,求 $(\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j))\mod p$ . $n\le 10^{10}$ . ...

  3. UVA12995 Farey Sequence

    UVA12995 Farey Sequence 欧拉函数 同仪仗队那题几乎相同,本质都是求欧拉函数的和 #include<cstdio> #define N 1000000 ],i,j,t ...

  4. 洛谷UVA12995 Farey Sequence(欧拉函数,线性筛)

    洛谷题目传送门 分数其实就是一个幌子,实际上就是求互质数对的个数(除开一个特例\((1,1)\)).因为保证了\(a<b\),所以我们把要求的东西拆开看,不就是\(\sum_{i=2}^n\ph ...

  5. Poj 2478-Farey Sequence 欧拉函数,素数,线性筛

    Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14291   Accepted: 5647 D ...

  6. 【poj2478-Farey Sequence】递推求欧拉函数-欧拉函数的几个性质和推论

    http://poj.org/problem?id=2478 题意:给定一个数x,求<=x的数的欧拉函数值的和.(x<=10^6) 题解:数据范围比较大,像poj1248一样的做法是不可行 ...

  7. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  8. BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)

    今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...

  9. BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)

    第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...

随机推荐

  1. tomcat maven插件启动报错tomcat-users.xml cannot be read

    tomcat maven插件启动报错tomcat-users.xml cannot be read [ERROR] Failed to execute goal org.codehaus.mojo:t ...

  2. EL表达式格式化日期

    在EL表达式中要显示"yyyy-MM-dd"格式的日期: 使用<fmt:>格式化标签     1 在页面上导入   <%@ taglib prefix=" ...

  3. codeforces 876 D. Sorting the Coins

    http://codeforces.com/contest/876/problem/D D. Sorting the Coins time limit per test 1 second memory ...

  4. [Luogu 2023] AHOI2009 维护序列

    [Luogu 2023] AHOI2009 维护序列 恕我冒昧这和线段树模板二有个琴梨区别? #include <cstdio> int n,m; long long p; class S ...

  5. Load an image from a url into a PictureBox

    var url="https://xyk.cebbank.com/verify_code.jpg?3345789"; HttpClient client = new HttpCli ...

  6. iOS网络基础---iOS-Apple苹果官方文档翻译

    CHENYILONG Blog iOS网络基础---iOS-Apple苹果官方文档翻译 iOS网络基础 技术博客http://www.cnblogs.com/ChenYilong/ 新浪微博http: ...

  7. sqlmap tamper编写

    #!/usr/bin/env python """ Copyright (c) 2006-2017 sqlmap developers (http://sqlmap.or ...

  8. 74.VS2013和opencv3.1.0安装教程

    一.先下载文件 1.VS2013 VS2013有很多版本,专业版,旗舰版,中文英文之类的,所对应的密钥也不一样.我选择的是简体中文专业版.下载链接如下. http://www.musnow.com/t ...

  9. koa中间层 文件下载的请求转发

    背景: 前端用a标签发起下载文档的get请求 node中间层接到get请求后将请求转发到java后端 java后端返回文档流传递给node中间层 好处: 后端的java业务逻辑层接口.数据库不向外部暴 ...

  10. html的loadrunner脚本

    Action(){ char strs[20]; lr_start_transaction("api_sync_order");   web_add_header("SO ...