2017ACM暑期多校联合训练 - Team 7 1009 HDU 6128 Inverse of sum (数学计算)
Problem Description
There are n nonnegative integers a1…n which are less than p. HazelFan wants to know how many pairs i,j(1≤i<j≤n) are there, satisfying 1ai+aj≡1ai+1aj when we calculate module p, which means the inverse element of their sum equals the sum of their inverse elements. Notice that zero element has no inverse element.
Input
The first line contains a positive integer T(1≤T≤5), denoting the number of test cases.
For each test case:
The first line contains two positive integers n,p(1≤n≤105,2≤p≤1018), and it is guaranteed that p is a prime number.
The second line contains n nonnegative integers a1...n(0≤ai<p).
Output
For each test case:
A single line contains a nonnegative integer, denoting the answer.
Sample Input
2
5 7
1 2 3 4 5
6 7
1 2 3 4 5 6
Sample Output
4
6
题意:
给定一个数组a,找出数组a里面所有的满足当(1≤i<j≤n)是,1/(ai+aj)≡1/ai+1/aj的关系有多少对。
分析:
如果暴力遍历整个a数组的话,因为i,j的位置都需要确定,时间复杂度相当于n^2,肯定会超时,所以想办法将上面的式子进行变形,使之变为在O(n)的时间之内可以确定出来结果。
将式子通分后化简可得(ai2+aj2+ai*aj)%p=0 。
然后等式两边同时乘上(ai-aj),化简可得(ai3-aj3)%p=0。现在的问题就转换为求满足这个关系的对数。
但是直接计算满足这个等式的pair的对数就可以了吗?不是。我们还要考虑到a[i]=a[j]的时候。
当a[i]=a[j]时,(ai2+aj2+aiaj)%p=0 可以转换为(a[i]a[i]+a[i]a[i]+a[i]a[i])%p=0%p(因为p是素数)是不满足条件的,但是我们直接计算上面那个式子会把满足这个关系的式子也算进去,所以我们需要把满足a[i]=a[j]即 3a[i]a[j]>0的这些对数减掉。 这样求出来的才是最终的结果。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+7;
int t,n;
ll p,a[N];
map<ll,int>hsh;
map<ll,int>cnt;
ll mul(ll a,ll b)///注意这里并不是整数幂,作用时将a连加b次,返回加后的结果
{
ll an=0;
while(b)
{
if(b&1)an=(an+a)%p;
b>>=1,a=(a+a)%p;
}
return an;
}
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d%lld",&n,&p);
hsh.clear();
cnt.clear();
ll ans=0;
for(int i=1;i<=n;i++)
{
scanf("%lld",a+i);
if(!a[i])continue;
if(mul(mul(a[i],a[i]),3))ans-=cnt[a[i]];///判断3*a[i]*a[i]的值是否大于0,大于的话要把之前加上的全部减去
ll tp=mul(mul(a[i],a[i]),a[i]);///求出的是a[i]^3
ans+=hsh[tp]++;///当前求出的这个tp值可以于之前的所有的相匹配,匹配过后个数再加,下次匹配时的方案数就是这次加过之后的
++cnt[a[i]];///a[i]所对应的值也要更新
}
printf("%lld\n",ans);
}
return 0;
}
2017ACM暑期多校联合训练 - Team 7 1009 HDU 6128 Inverse of sum (数学计算)的更多相关文章
- 2017ACM暑期多校联合训练 - Team 3 1003 HDU 6058 Kanade's sum (模拟)
题目链接 Problem Description Give you an array A[1..n]of length n. Let f(l,r,k) be the k-th largest elem ...
- 2017ACM暑期多校联合训练 - Team 2 1009 HDU 60563 TrickGCD (容斥公式)
题目链接 Problem Description You are given an array A , and Zhu wants to know there are how many differe ...
- 2017ACM暑期多校联合训练 - Team 2 1011 HDU 6055 Regular polygon (数学规律)
题目链接 **Problem Description On a two-dimensional plane, give you n integer points. Your task is to fi ...
- 2017ACM暑期多校联合训练 - Team 4 1004 HDU 6070 Dirt Ratio (线段树)
题目链接 Problem Description In ACM/ICPC contest, the ''Dirt Ratio'' of a team is calculated in the foll ...
- 2017ACM暑期多校联合训练 - Team 9 1005 HDU 6165 FFF at Valentine (dfs)
题目链接 Problem Description At Valentine's eve, Shylock and Lucar were enjoying their time as any other ...
- 2017ACM暑期多校联合训练 - Team 9 1010 HDU 6170 Two strings (dp)
题目链接 Problem Description Giving two strings and you should judge if they are matched. The first stri ...
- 2017ACM暑期多校联合训练 - Team 8 1006 HDU 6138 Fleet of the Eternal Throne (字符串处理 AC自动机)
题目链接 Problem Description The Eternal Fleet was built many centuries ago before the time of Valkorion ...
- 2017ACM暑期多校联合训练 - Team 8 1002 HDU 6134 Battlestation Operational (数论 莫比乌斯反演)
题目链接 Problem Description The Death Star, known officially as the DS-1 Orbital Battle Station, also k ...
- 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)
题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...
随机推荐
- PHP SQL查询结果在页面上是乱码
今天系统网页出现这样一个问题:下图左边类型栏数据是没显示出来 打印SQL查询的数据是有的 原因是:————> eval函数里'return '这一字符串一定要有空格哈,没有空格,这语句就是错的. ...
- php中扩展pecl与pear
要为大家分享的内容是PECL 和 PEAR 他们之间的不同和相同之处. PEAR 是“PHP Extension and Application Repository”的缩写,即PHP扩展和应用仓库. ...
- IE 代理服务器设置程序实现
IE 代理服务器设置程序实现 分类: Delphi2003-08-02 18:42 1398人阅读 评论(0) 收藏 举报 服务器ieinternetstringconstructordelphi 本 ...
- elasticsearch6 学习之基础CURD
环境:elasticsearch6.1.2 kibana6.1.2 基础概念: 1._index元数据 (1)代表一个document存放在哪个index中(2)类似的数据放在一个索引 ...
- Java NIO中的Buffer
简介 Buffer缓冲区,首先要弄明白的是,缓冲区是怎样一个概念.它其实是缓存的一种,我们常说的缓存,包括保存在硬盘上的浏览器缓存,保存在内存中的缓存(比如Redis.memcached).Buffe ...
- 【JavaScript】获取项目路径地址
在jsp页面顶上面定义 <% String path = request.getContextPath(); String basePath = request.getScheme() + &q ...
- [HAOI2017]八纵八横 线性基
题面 题面 题解 观察到题目中的 "内陆经济环" 不好处理,因此我们把它拆成 "内陆经济链". 对于1号节点,我们创建一个它的复制节点n + 1号节点,这个节点 ...
- Elasticsearch之基本操作
elasticsearch是一个是开源的(Apache2协议),分布式的,RESTful的,构建在Apache Lucene之上的的搜索引擎. 它有很多特点例如Schema Free,Document ...
- 【BZOJ1063】【NOI2008】道路设计(动态规划)
[BZOJ1063][NOI2008]道路设计(动态规划) 题面 BZOJ 题解 发现每个点最多只能被修一次等价于每个点最多只能和两条铁路相邻 考虑一个\(dp\) 设\(f[i][0/1/2]\)表 ...
- Python精要参考(第二版)
ython 精要参考(第二版) 是Python语言初学者不错的参考学习用书,本系列译自Python Essential Reference, Second Edition 希望本系列可以给python ...