【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂
【题意】n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n。给定n,k,p,求满足要求的方案数%30031。n<=10^9,k<=p<=10。
【算法】状压DP+矩阵快速幂
【题解】开始没看到p<=10,其实很显然p>k的话第一车就不满足要求了。考虑相邻停靠点没有关键信息,只能状压。
因为车都是从头开到尾的,所以直接考虑i~i-p+1的公车停靠状态就行了(i-p和i的距离为p,也就是必须跳到i,因此考虑i-p没有意义)。
设$f[i][S]$表示考虑第i个位置(最快的车可能到i),i~i-p+1的公车停靠状态为S的方案数,并且强制S的最低位为1(从前往后从低到高)。
$$f[i][S]=\sum f[i-1][S']$$
将S右移一位,然后枚举0~p中没有1的位置插入一个1得到的就是合法的S‘,然后把所有状态放在矩阵中就可以快速幂n-k次了。
注意到S是有效状态当且仅当S中含有恰好k个1,所以预处理合法状态数是C(p,k)的,这样复杂度就可以保证了。
总复杂度O(C(p,k)^3*log n)。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,MOD=;
int n,k,p,tot,c[N][N],q[N*],A[N][N],ANS[N][N];
void multply(int a[N][N],int b[N][N]){
for(int i=;i<=tot;i++){
for(int j=;j<=tot;j++){
c[i][j]=;
for(int k=;k<=tot;k++){
c[i][j]=(c[i][j]+a[i][k]*b[k][j])%MOD;
}
}
}
for(int i=;i<=tot;i++)for(int j=;j<=tot;j++)b[i][j]=c[i][j];
}
int main(){
scanf("%d%d%d",&n,&k,&p);
for(int S=;S<(<<p);S++)if(S&){
int num=;
for(int i=;i<p;i++)if(S&(<<i))num++;
if(num!=k)continue;
tot++;q[S]=tot;
}
for(int S=;S<(<<p);S++)if(q[S]){
int s=S>>;
for(int i=;i<p;i++)if(!(s&(<<i))&&q[s|(<<i)])A[q[S]][q[s|(<<i)]]=;//
}
n-=k;
int s=(<<k)-;
ANS[q[s]][]=;
while(n){
if(n&)multply(A,ANS);
multply(A,A);
n>>=;
}
s=(<<k)-;
printf("%d",ANS[q[s]][]);
return ;
}
【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂的更多相关文章
- 【bzoj2004】[Hnoi2010]Bus 公交线路 状压dp+矩阵乘法
题目描述 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定按下述规则设计 ...
- [Bzoj2004][Hnoi2010]Bus 公交线路(状压dp&&矩阵加速)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2004 看了很多大佬的博客才理解了这道题,菜到安详QAQ 在不考虑优化的情况下,先推$dp ...
- BZOJ 2004 公交线路(状压DP+矩阵快速幂)
注意到每个路线相邻车站的距离不超过K,也就是说我们可以对连续K个车站的状态进行状压. 然后状压DP一下,用矩阵快速幂加速运算即可. #include <stdio.h> #include ...
- BZOJ2004:[HNOI2010]Bus 公交线路(状压DP,矩阵乘法)
Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定 ...
- HDU 5434 Peace small elephant 状压dp+矩阵快速幂
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant Accepts: 38 Submissions: ...
- 【BZOJ2004】[Hnoi2010]Bus 公交线路 状压+矩阵乘法
[BZOJ2004][Hnoi2010]Bus 公交线路 Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1 ...
- BZOJ2004 HNOI2010公交线路(状压dp+矩阵快速幂)
由数据范围容易想到矩阵快速幂和状压. 显然若要满足一辆公交车的相邻站台差不超过p,则每相邻p个站台中每辆车至少经过一个站台.可以发现这既是必要的,也是充分的. 开始的时候所有车是相邻的.考虑每次把一辆 ...
- 『公交线路 状压dp 矩阵乘法加速』
公交线路 Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的 ...
- BZOJ 4000: [TJOI2015]棋盘( 状压dp + 矩阵快速幂 )
状压dp, 然后转移都是一样的, 矩阵乘法+快速幂就行啦. O(logN*2^(3m)) ------------------------------------------------------- ...
随机推荐
- lintcode-442-实现 Trie
442-实现 Trie 实现一个 Trie,包含 insert, search, 和 startsWith 这三个方法. 注意事项 你可以假设所有的输入都是小写字母a-z. 样例 insert(&qu ...
- 敏捷冲刺DAY5
一. 每日会议 1. 照片 2. 昨日完成工作 发布和提供需求功能的实现 用户修改自己的信息 用户界面设计 管理员界面设计 3. 今日完成工作 4. 工作中遇到的困难 1.设置的背景无法显示. 2.一 ...
- python基础(一)简单入门
一.第一个python程序 1.交互式编程 直接在命令行里面输入python即可进入python交互式命令行,linux下一样: 在 python 提示符中输入以下文本信息,然后按 Enter 键查看 ...
- ubuntu 手动apache记录
1.下载apache tar -xvzf httpd.xx 解压 2.下载安装pcre Download PCRE from PCRE.org 解压,进入文件夹中 ./configure --pre ...
- 【转】史上最浅显易懂的Git教程!
之前一直在找git的学习教程,网上搜到很多,但是大多数写的都非常简单或者混乱,你知道技术男的思维就是以为他抛一个专业术语出来,以为你都懂……或者简单写两句,插个图,他觉得他懂了,你也能懂,事实上初学者 ...
- HttpWebRequest 保存Cookies,模拟Session登录
前面使用HttpWebRequest 对象可以抓取网页中一些资料,不过有些页面可以直接打开,而有些页面必登录之后才能打开,也就是在登录后保存登录信息在Session,这样就可以访问有权限的页面了.下面 ...
- HDU4059_The Boss on Mars
数论题. 首先我们知道公式:1^4+2^4+3^4+……+n^4=(n)*(n+1)*(2*n+1)*(3*n*n+3*n-1) /30; 然后我们要把多余的减掉.这里用到的是mobius反演. 总之 ...
- BZOJ 2299 向量(裴蜀定理)
题意:给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x ...
- appium使用H5怎么定位元素
允许是一个class,如果遇到有多个class,只能填写一个. 对于移动端H5元素定位采用Chromedriver的解决方案,具体操作如下: 1.手机安装Chrome浏览器 2.开启USB调试模式,并 ...
- day 03 字符串 for 循环
1.有变量量name = "aleX leNb" 完成如下操作: 1)移除 name 变量量对应的值两边的空格,并输出处理理结果 name = "aleX leNb&qu ...